使用Python统计深圳市公租房申请人省份年龄统计

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了使用Python统计深圳市公租房申请人省份年龄统计相关的知识,希望对你有一定的参考价值。

     使用Python,htmlParser来统计深圳市保障房申请人的原籍省份分布,年龄分布等。从侧面可以反映鹏城人的地域分布。以下python代码增大了每一次获取的记录数,从而少提交几次请求。如果按照WEB主页设定的每一次请求最多50个记录,那就得提交数千次请求,显然费时。另外,也可以使用多线程处理,快速获得数据,解析数据,然后使用pandas,matplotlib等工具进行数据处理和绘制。查询了系统,截止2016年2月,轮候系统的保障房人数大概4万多,公租房轮候人数大概5万,以下数据仅作学习使用,统计结果如下:

技术分享

技术分享

        毫无疑问,广东本地人申请的占多数。前十名当中,和广东接壤的省份也占了不少比例,特别是两湖,江西,剩下的由人口大省占据。深圳保障房建设速度和规模居全国首位,但是因为人数众多,所以需要排队等候。远离XX的房东,避免年年涨的房租,那就加入排队轮候大军吧。

        

技术分享
  1 # -*- coding:utf-8 -*-
  2 import time
  3 import json
  4 import lxml.html
  5 from lxml import etree
  6 from  HTMLParser import HTMLParser #使用beautifulsoup也可以
  7 
  8 #http://www.crummy.com/software/BeautifulSoup/
  9 #http://blog.csdn.net/my2010sam/article/details/14526223
 10 
 11 try:
 12     from urllib.request import urlopen,Request
 13 except:
 14     from urllib2 import urlopen, Request
 15 
 16 
 17 area={"11":"北京","12":"天津","13":"河北","14":"山西","15":"内蒙古","21":"辽宁","22":"吉林","23":"黑龙江","31":"上海",
 18       "32":"江苏","33":"浙江","34":"安徽","35":"福建","36":"江西","37":"山东","41":"河南","42":"湖北","43":"湖南",
 19       "44":"广东","45":"广西","46":"海南","50":"重庆","51":"四川","52":"贵州","53":"云南","54":"西藏","61":"陕西",
 20       "62":"甘肃","63":"青海","64":"宁夏","65":"新疆","71":"台湾","81":"香港","82":"澳门","91":"国外"}
 21 ages =[0]*11
 22 provinceCnt=[0]*91
 23 RECORD_BY_EACH_PAGE = [10,15,30,50,5000]
 24 currentYear=time.localtime()[0]#get year
 25 URL_BY_PAGESIZE=http://bzflh.szjs.gov.cn/TylhW/lhmcAction.do?pageSize=%s&method=queryYgbLhmcInfo&waittype=2
 26 
 27 #http://XXX.cn?pageSize=XXX&page=XXX,waittype=2 公租房,waittype=1 安居房
 28 URL_BY_PAGE_PAGESIZE  =http://bzflh.szjs.gov.cn/TylhW/lhmcAction.do?pageSize=%s&method=queryYgbLhmcInfo&waittype=%s&page=%s
 29 
 30 #Social_Housing_Items=[URL_BY_PAGE_PAGESIZE_GongZuFang,URL_BY_PAGE_PAGESIZE_AnJuFang]
 31 
 32 def getHomePage(url,pagesize):
 33     try:
 34         request = Request(url)
 35         lines=urlopen(request,timeout=10).read()
 36         if len(lines)<20:
 37             return None #no data
 38     except Exception as e:
 39             print e
 40     else:
 41         if pagesize!=10 and pagesize!=15 and pagesize!=30 and pagesize!=50 and pagesize !=5000:
 42             pagesize = 15 #default as 15 record each page
 43         lines=lines.decode(utf-8)
 44         splitLines=lines.split(\r\n)
 45         for line in splitLines:
 46             #if "pageSize" in line:
 47                 #print line[:50]
 48             if "pagebanner" in line:
 49                 totalPage= line[:50].split(>)[1].split( )[0]
 50                 totalPage=totalPage.split(,)
 51                 if  len(totalPage)>1:
 52                     pages=(int(totalPage[0])*1000+int(totalPage[1]))/pagesize
 53         return pages
 54 
 55 def getRawData(url):
 56     try:
 57         request = Request(url)
 58         lines=urlopen(request,timeout=10).read()
 59         if len(lines)<20:
 60             return None #no data
 61     except Exception as e:
 62             print e
 63     else:
 64         return lines.decode(utf-8)
 65 
 66 def getIdentityInfo(code):
 67     """
 68     :param code: identity code showing province and date
 69     :return: province,date
 70     """
 71     provinceCode=code[:2]
 72     cityCode = code[2:6]
 73     date=code[6:10]
 74     return provinceCode,date
 75 
 76 class Dataparser(HTMLParser):
 77     def __init__(self):
 78         HTMLParser.__init__(self)
 79         self.tr=False
 80         self.td =0
 81         self.data =False
 82     def handle_starttag(self,tag,attrs):
 83         """
 84         参数tag是标签名,比如td,tr‘,attrs为标签所有属性(name,value)列表,这里是[(‘class‘,‘para‘)]
 85         :param tag:
 86         :param attrs:
 87         :return:
 88         """
 89         if tag==tr:
 90             self.tr=True
 91         if tag ==tdand self.tr==True:
 92             self.data = True
 93             for name,value in attrs:
 94                 print "name and value are",name,value
 95     def handle_endtag(self,tag):
 96         if tag==td:
 97             self.data = False
 98             #print "a end tag:",tag,self.getpos()
 99 
100     def handle_data(self,data):
101         if self.data and len(data)==18 and  \r\n not in data:
102             #print data #ID card NO
103             provinceCode,date=getIdentityInfo(data)
104             ageRange=currentYear - int(date)
105             if ageRange>=100:
106                 print test,ageRange
107             #ages[ageRange/10] +=1
108             #temp=area[provinceCode].decode(‘utf-8‘)
109             PC=int(provinceCode)
110             provinceCnt[PC]+=1
111 
112 if __name__ ==__main__:
113     #计算总共页数,每页可以自己限定
114     for type in range(2):
115         pages=getHomePage(URL_BY_PAGE_PAGESIZE%(RECORD_BY_EACH_PAGE[0],type+1,1),RECORD_BY_EACH_PAGE[4])
116         parse=Dataparser()
117         while pages>=1:
118             #for page in range(pages):
119             lines=getRawData(URL_BY_PAGE_PAGESIZE%(RECORD_BY_EACH_PAGE[4],type+1,pages))
120             parse.feed(lines)
121             #parse.close()
122             pages-=1
123         parse.close()
124         if type==0:
125             print "深圳安居房申请人全国分布情况统计:"
126             for i in provinceCnt:
127                 if i>0:          #只打印有数据的省份
128                     pIndex=str(provinceCnt.index(i))
129                     print area[pIndex],i
130             provinceCnt =[0]*91
131         elif type==1:
132             print "深圳公租房申请人全国分布情况统计:"
133             for i in provinceCnt:
134                 if i>0:          #只打印有数据的省份
135                     pIndex=str(provinceCnt.index(i))
136                     print area[pIndex],i
137             provinceCnt =[0]*91
View Code

 

以上是关于使用Python统计深圳市公租房申请人省份年龄统计的主要内容,如果未能解决你的问题,请参考以下文章

大数据统计租房市场现状(深圳篇)

毕业设计-基于Springboot实现公租房申请管理系统

毕业设计-基于Springboot实现公租房申请管理系统

海淀将建设100平方公里自动驾驶示范区,这些人可申请人才公租房

爬虫案例—深圳租房数据的回归分析

富裕的深圳人与租房的深圳人