CacheManager彻底解密:CacheManager运行原理流程图和源码详解(DT大数据梦工厂)
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了CacheManager彻底解密:CacheManager运行原理流程图和源码详解(DT大数据梦工厂)相关的知识,希望对你有一定的参考价值。
内容:
1、CacheManager重大价值;
2、CacheManager运行原理图;
3、CacheManager源码解析;
BlockManager针对Cache这样的行为做了CacheManager
Spark出色的原因:
1、Spark基于RDD构成了一体化、多元化的大数据处理中心(不需要再处理多种范式来部署多种框架,只要Spark!!!降低成本投入获得更高的产出);
2、迭代,因为在计算的时候迭代,在构建复杂算法的时候非常方便(图计算、机器学习、数据仓库),而CacheManager 在多重迭代的时候非常重要;
==========CacheManager分析============
1、CacheManager管理的是缓存,而缓存可以是基于内存的缓存,也可以是基于磁盘的缓存;
2、CacheManager需要通过BlockManager来操作数据;
3、每当Task运行的时候,会调用RDD的conpute方法,而compute方法会调用iterator方法,从下面代码中可以看到默认的RDD是基于内存的,计算一次后基本从CacheManager获得;
/**
* Internal method to this RDD; will read from cache if applicable, or otherwise compute it.
* This should ‘‘not‘‘ be called by users directly, but is available for implementors of custom
* subclasses of RDD.
*/
final def iterator(split: Partition, context: TaskContext): Iterator[T] = {
if (storageLevel != StorageLevel.NONE) {
SparkEnv.get.cacheManager.getOrCompute(this, split, context, storageLevel)
} else {
computeOrReadCheckpoint(split, context)
}
}
==========CacheManager源码详解============
1、Cache在工作的时候会最大化的保留数据,但是数据不一定绝对完整,因为当前的计算如果需要内存空间的话,那么Cache在内存中的数据必须让出空间,此时如果在RDD持久化的时候同时指定了可以把数据放在disk上,那么部分cache的数据就可以从内存转入磁盘,否则的话,数据就会丢失。所以Cache不一定可靠,所以必须得用getOrCompute来确定数据能取到!!!
/** Gets or computes an RDD partition. Used by RDD.iterator() when an RDD is cached. */
def getOrCompute[T](
rdd: RDD[T],
partition: Partition,
context: TaskContext,
storageLevel: StorageLevel): Iterator[T] = {
val key = RDDBlockId(rdd.id, partition.index)
logDebug(s"Looking for partition $key")
blockManager.get(key) match {
case Some(blockResult) =>
// Partition is already materialized, so just return its values
val existingMetrics = context.taskMetrics
.getInputMetricsForReadMethod(blockResult.readMethod)
existingMetrics.incBytesRead(blockResult.bytes)
val iter = blockResult.data.asInstanceOf[Iterator[T]]
new InterruptibleIterator[T](context, iter) {
override def next(): T = {
existingMetrics.incRecordsRead(1)
delegate.next()
}
}
case None =>
// Acquire a lock for loading this partition
// If another thread already holds the lock, wait for it to finish return its results
val storedValues = acquireLockForPartition[T](key)
if (storedValues.isDefined) {
return new InterruptibleIterator[T](context, storedValues.get)
}
// Otherwise, we have to load the partition ourselves
try {
logInfo(s"Partition $key not found, computing it")
val computedValues = rdd.computeOrReadCheckpoint(partition, context)
// If the task is running locally, do not persist the result
if (context.isRunningLocally) {
return computedValues
}
// Otherwise, cache the values and keep track of any updates in block statuses
val updatedBlocks = new ArrayBuffer[(BlockId, BlockStatus)]
val cachedValues = putInBlockManager(key, computedValues, storageLevel, updatedBlocks)
val metrics = context.taskMetrics
val lastUpdatedBlocks = metrics.updatedBlocks.getOrElse(Seq[(BlockId, BlockStatus)]())
metrics.updatedBlocks = Some(lastUpdatedBlocks ++ updatedBlocks.toSeq)
new InterruptibleIterator(context, cachedValues)
} finally {
loading.synchronized {
loading.remove(key)
loading.notifyAll()
}
}
}
}
2、具体CacheManager在获得缓存数据的时候,首先会通过BlockManager来抓到数据(其中getLocal和getRemote在上一讲有提及);
/**
* Get a block from the block manager (either local or remote).
*/
def get(blockId: BlockId): Option[BlockResult] = {
val local = getLocal(blockId)
if (local.isDefined) {
logInfo(s"Found block $blockId locally")
return local
}
val remote = getRemote(blockId)
if (remote.isDefined) {
logInfo(s"Found block $blockId remotely")
return remote
}
None
}
3、缓存没有数据算的时候,先要锁数据,这里还是从blockManager中获得数据(一般走到这里从这里也取不到的);
/**
* Acquire a loading lock for the partition identified by the given block ID.
*
* If the lock is free, just acquire it and return None. Otherwise, another thread is already
* loading the partition, so we wait for it to finish and return the values loaded by the thread.
*/
private def acquireLockForPartition[T](id: RDDBlockId): Option[Iterator[T]] = {
loading.synchronized {
if (!loading.contains(id)) {
// If the partition is free, acquire its lock to compute its value
loading.add(id)
None
} else {
// Otherwise, wait for another thread to finish and return its result
logInfo(s"Another thread is loading $id, waiting for it to finish...")
while (loading.contains(id)) {
try {
loading.wait()
} catch {
case e: Exception =>
logWarning(s"Exception while waiting for another thread to load $id", e)
}
}
logInfo(s"Finished waiting for $id")
val values = blockManager.get(id)
if (!values.isDefined) {
/* The block is not guaranteed to exist even after the other thread has finished.
* For instance, the block could be evicted after it was put, but before our get.
* In this case, we still need to load the partition ourselves. */
logInfo(s"Whoever was loading $id failed; we‘ll try it ourselves")
loading.add(id)
}
values.map(_.data.asInstanceOf[Iterator[T]])
}
}
}
4、如果CacheManager没有通过BlockManager获得缓存内容的话,此时会通过BlockManager的RDD的如下方法来获得数据:
val computedValues = rdd.computeOrReadCheckpoint(partition, context)
/**
* Compute an RDD partition or read it from a checkpoint if the RDD is checkpointing.
*/
private[spark] def computeOrReadCheckpoint(split: Partition, context: TaskContext): Iterator[T] =
{
if (isCheckpointedAndMaterialized) {
firstParent[T].iterator(split, context)
} else {
compute(split, context)
}
}
上述方法首先会查看当前的RDD是否进行了checkpoint,如果进行了的话,就直接读取checkpoint的数据,否则的话,就必须进行计算,计算之后会通过putInBlockManager会把数据按照StorageLevel重新缓存起来;
备注:所以如果多步骤迭代的话,有了checkpoint,就极大提升效率了!
5、缓存的时候如果需要放在内存中,内存足够的情况下,看到一点内存就放一下,看到一点内存就放一下,一点一点放,实在放不完,就放disk;
private def putInBlockManager[T](
key: BlockId,
values: Iterator[T],
level: StorageLevel,
updatedBlocks: ArrayBuffer[(BlockId, BlockStatus)],
effectiveStorageLevel: Option[StorageLevel] = None): Iterator[T] = {
val putLevel = effectiveStorageLevel.getOrElse(level)
if (!putLevel.useMemory) {
/*
* This RDD is not to be cached in memory, so we can just pass the computed values as an
* iterator directly to the BlockManager rather than first fully unrolling it in memory.
*/
updatedBlocks ++=
blockManager.putIterator(key, values, level, tellMaster = true, effectiveStorageLevel)
blockManager.get(key) match {
case Some(v) => v.data.asInstanceOf[Iterator[T]]
case None =>
logInfo(s"Failure to store $key")
throw new BlockException(key, s"Block manager failed to return cached value for $key!")
}
} else {
/*
* This RDD is to be cached in memory. In this case we cannot pass the computed values
* to the BlockManager as an iterator and expect to read it back later. This is because
* we may end up dropping a partition from memory store before getting it back.
*
* In addition, we must be careful to not unroll the entire partition in memory at once.
* Otherwise, we may cause an OOM exception if the JVM does not have enough space for this
* single partition. Instead, we unroll the values cautiously, potentially aborting and
* dropping the partition to disk if applicable.
*/
blockManager.memoryStore.unrollSafely(key, values, updatedBlocks) match {
case Left(arr) =>
// We have successfully unrolled the entire partition, so cache it in memory
updatedBlocks ++=
blockManager.putArray(key, arr, level, tellMaster = true, effectiveStorageLevel)
arr.iterator.asInstanceOf[Iterator[T]]
case Right(it) =>
// There is not enough space to cache this partition in memory
val returnValues = it.asInstanceOf[Iterator[T]]
if (putLevel.useDisk) {
logWarning(s"Persisting partition $key to disk instead.")
val diskOnlyLevel = StorageLevel(useDisk = true, useMemory = false,
useOffHeap = false, deserialized = false, putLevel.replication)
putInBlockManager[T](key, returnValues, level, updatedBlocks, Some(diskOnlyLevel))
} else {
returnValues
}
}
}
}
王家林老师名片:
中国Spark第一人
新浪微博:http://weibo.com/ilovepains
微信公众号:DT_Spark
博客:http://blog.sina.com.cn/ilovepains
手机:18610086859
QQ:1740415547
本文出自 “一枝花傲寒” 博客,谢绝转载!
以上是关于CacheManager彻底解密:CacheManager运行原理流程图和源码详解(DT大数据梦工厂)的主要内容,如果未能解决你的问题,请参考以下文章