hcs12 microcontroller 笔记

Posted This is bill

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了hcs12 microcontroller 笔记相关的知识,希望对你有一定的参考价值。

文章来由

来到美国后,选了微处理器课,有幸老教授是 MIT 贝尔实验室出来的,希望好好学习这门课。

零、Chapter 0 绪论

0-2 Logic Gates

1、基础逻辑门(注意记住符号)

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

2、三态缓冲器

这里写图片描述

三态缓冲器(Three-state buffer),又称为三态门、三态驱动器,其三态输出受到使能输出端的控制,当使能输出有效时,器件实现正常逻辑状态输出(逻辑0、逻辑1),当使能输入无效时,输出处于高阻状态,即等效于与所连的电路断开。

3、Logic Design using Gates 为什么可以用 and 做 carry

•Note that there are 4 possible outcomes when adding a pair of binary numbers

•0 + 0 = carry 0, sum 0
•0 + 1 = carry 0, sum 1
•1 + 0 = carry 0, sum 1
•1 + 1 = carry 1, sum 0

•Recall that the AND gate only outputs 1 if both inputs are true, thus it could be used to output the carry bit.

•Recall that the XOR gate only outputs 1 if and only if one of the inputs are true.

4、半加器

这里写图片描述

另一种形式

这里写图片描述

这里写图片描述

5、全加器

这里写图片描述

这里写图片描述

6、三位全加器

这里写图片描述

Application of the previous 3 Bit Adder

•Assume we want to add the binary numbers 010 and 011..

•Using the truth table shows before..

•We know that 0+1 with no carry in will result in Sum of 1 with no carry
•Also, 1+1 with no carry in will result in sum of 0 with carry out of 1 •Finally, 0+0 with carry in will result in sum of 1 with no carry

•Result is 0101

•The take away here is that we can cascade as many full adders as we want to add as large of a pair of binary numbers as we want.

•For example a 64 bit sum would require 64 cascaded adders

0-3 Semiconductor Memory(ROM、RAM类型)

1、Internal Organization of computers

•3 major subsystems
•CPU – Central Processing Unit •Memory •I/O Input Output

•Connected by buses
•Data •Address •Control

这里写图片描述

More About the Data Bus
•Analogous to Highway
•The more lanes, the more simultaneous traffic
•The more data buses the better
•This adds to expense
•Note that we currently have 64 bit CPUs and operating systems
•The size of the data bus is related to both size and precisions of arithmetic operations

More About the Address Bus
•Every addressable device must have a unique address
•The larger the address bus, the larger number of devices which may be addressed by the CPU
•Recall that decoders are used on addressable device to establish their address.
•The number of devices which may be addressed is always equal to 2^x where x is the number of address lines.
•For example, a 16 bit address bus can access 64k of addressable memory
•This is a unidirectional bus (send only from CPU)

2、Relation of CPU to RAM and ROM

这里写图片描述

3、Memory Capacity

•This is the number of bits a memory chip can store
•Chip capacity has units of bits, Computer system capacity has units of bytes

4、Memory Organization

•Memory chips are organized into a number of locations within the IC
•Each location can hold 1, 4, 8, 16, or more bits
•The number of bits that each location will hold is equal to the number of data
pins on the chip.
•The number of locations on the chip is determined by the number of address pins on the chip say x. 2^x is the number of locations (addresses) on the chip
•Total number of bits which may be stored on the entire chip is given by 2^(address pins) times the number of data pins

这里写图片描述

Another Organization/Capacity Example

•We have a chip with 256k capacity with 8 data pins.
•The organization is 256k/8 = 32K x 8 •The number of address lines is 15 since 2^15 = 32K

5、不同ROM类型

Different types such as:
•PROM
•EPROM
•EEPROM
•FLASH EPROM
•MASK PROM

(1)PROM (programmable ROM) and OTP

这里写图片描述

(2)EPROM (erasable programmable ROM) and UV-EPROM

这里写图片描述

(3)Some UV-EPROM Memory Chips obsolete 已过时

这里写图片描述

(4)EEPROM (electrically erasable programmable ROM)

这里写图片描述

(5)Flash Memory EPROM

这里写图片描述

(6)Mask ROM

这里写图片描述

6、不同RAM类型

3 types
•Static RAM
•Nonvolatile RAM
•Dynamic Ram

(1)SRAM (static RAM)

这里写图片描述

(2)NV-RAM (nonvolatile RAM)

这里写图片描述

(3)DRAM (dynamic RAM)

这里写图片描述

这里写图片描述

7、Memory Block Selection

•Simple Logic Gates
•Using 74LS138
•Programmable Logic such as CPLD or FPGA

这里写图片描述

这里写图片描述

详见:http://blog.csdn.net/scythe666/article/details/52428243

Using the 74LS138 3 – 8 decoder

•One of the most widely used decoders •3 inputs A, B, and C generate 8 active low outputs Y0 to Y7, •Each output is connected to CS of a different memory device allowing
control of 8 memory blocks
•Three additional inputs G1, G2A, and G2B may connected to an Address or Control Signal
•G2A and G2B active low •G1 active high •These inputs must be terminated in way or another •These inputs enable the device

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

0-4 Harvard and von Neumann CPU Architectures

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

一、Chapter 1 微处理器简史

这里写图片描述

二、Chapter 2 内存 寄存器 简单指令

2-1 Registers of HCS12

1、Registers overview

这里写图片描述

LDAA #$35 ; loads 55 hex into Accumulator A# signifies an immediate value 
•$ signifies that the immediate value is base 16

Absence of the # sign indicates that the value should be loaded from a memory location
•Eg LDAA $17 will load the contents of memory location 17 hex

2-2 The HCS12 Memory Map

1、Memory Space Allocation in the HCS12

这里写图片描述

这里写图片描述

2、Data RAM Space

这里写图片描述


这里写图片描述

3、EEPROM Space

这里写图片描述

4、Code ROM Space

这里写图片描述

这里写图片描述

这里写图片描述

5、Memory Address Verification Example

这里写图片描述

6、Dividing Memory Space into 4 Equal Sections

这里写图片描述

7、Accessing Memory Beyond 64 K

这里写图片描述

8、Where the HCS12 Wakes up when it is Powered up

这里写图片描述

这里写图片描述

9、Single Chip and Expanded Modes in the HCS12

这里写图片描述

这里写图片描述

2-3 HCS12 Addressing Modes

•HCS12 has 6 distinct addressing modes

–Inherent 无操作数
–Immediate 立即数
–Extended 直接访问内存地址
–Direct 直接寻址寄存器
–Relative 间接寻址,多用于跳转
–Indexed 变址寻址,用 X、Y

1、Inherent /Register Mode

这里写图片描述

2、Immediate Addressing

这里写图片描述

这里写图片描述

小端是高高低低,这里类似于大端,因为hcs12里面,A地址小于B

3、Extended Addressing

这里写图片描述

这里写图片描述

大小端模式

Freescale 微处理器都是大端模式

这里写图片描述

4、Direct Addressing

特殊的 Extended Addressing,用地址空间寻址寄存器

这里写图片描述

Note the below equivalent methods of storing contents of register A into PORTA

•STAA $00 == •STAA PORTA

5、Relative addressing 间接寻址,多用于跳转

这里写图片描述

6、Indexed Addressing 变址寻址,用 X、Y

这里写图片描述

这里写图片描述

这里写图片描述

**7、(重要)Load and Store Instructions

这里写图片描述

8、Instruction Size of the HCS12

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

2-4 HCS12 Condition Code Register(CCR)

这里写图片描述

1、C, the carry flag

•Set whenever there is a carry out from the D7 bit
•Affected after 8 or 16 bit addition or subtraction

2、H, the half byte carry flag

•Set when there is carry from D3 bit
•Cleared otherwise
•Used by operations that perform binary coded decimal arithmetic
•Sometimes called the Auxiliary Carry or AC flag

3、Z, the zero flag

•Reflects the result of an arithmetic or logic operation
•Set to 1 for a 0 result
•Set to 0 if result is not zero
•Useful for looping

4、V, the overflow flag

•This flag is set whenever the result of a signed number operation is too large
•The sign bit will therefore be overwritten

5、N, the negative flag

•Bit D7, the MSB in binary representation of 8 bit signed numbers is used to represent sign
–It is 0 for positive numbers and 1 for negative
numbers
•N is 0 when D7 is 0 •N is 1 when D7 is 1

**6、(重要)CCR register

这里写图片描述

这里写图片描述

**7、(重要)分支语句(1)CCR基本跳转

这里写图片描述

2-5 HCS12 Data Format and Directive

4 ways to represent a byte of data in the HCS12 assembler
–Hex
–Binary
–Decimal
–ASCII

1、hex

•Assembly:
–Precede number with $ sign
–Eg. LDDA #$25

•C language
–Precede number with 0x
–Eg. PORTB = 0x99

2、Binary Numbers

•Number is preceded by % sign
–Eg. LDDA #% 00100101 ; 25 hex

3、Decimal Number

•There is no symbol in front of the number
–Eg LDDA #12 ; 0C hex

4、ASCII CHARACTER

•Single quotes around the character are used to denote it as ASCII.
–Eg. LDAA #’9’ loads the value for the character 9
(39 hex)

•Double quotes are used for a string
–Use with the DC (define constant) directive

Assembler Directives

这里写图片描述

6、EQU

•This is used to define a constant value or fixed address
–Eg. COUNT EQU $25 ; Value of Count defined as 25 hex
–LDDA #COUNT ; Value of register A is 25 hex

SET

•Same as EQU except that:
–Value assigned by the SET directive may be reassigned later

USING EQU for RAM address assignment

•MYCOUNT EQU 5
•MYREG EQU $1200
–LDDA #MYCOUNT
–STAA MYREG ; NOW LOCATION 12OO H IS VALUE 5

Another address example

MYVAL EQU $33 
MYRAM EQU $1200 ;RAM ADRESS 1200 H 
LDAA #MYVAL ;A = 33H 
STAA MYRAM ; STORE A CONTENTS TO 1200 H 
STAA MYRAM +1 ; A CONTENT TO 1201 H 
STAA MYRAM +2 ; ACONTET TO 1202 H 
CLR A ; CLEAR CONTENTS 0F A 
ADDA MYRAM ; A=33 H 
ADDA MYRAM +1 ; A=66H 
ADDA MYRAM +2 ; A=99 H

7、ORIGIN and END DIRECTIVE

•ORG indicates the beginning of the address space

ORG tells the assembler to place the opcode at memory location 0

END DIRECTIVE

•END indicates the end of the source source code.

END indicates the end of the source code to the assembler

8、FCB Directive 可用来定义字符串

这里写图片描述

这里写图片描述

**9、Define Constant Byte Directive 可用来定义字符串

这里写图片描述

这里写图片描述

这里写图片描述

2-6 Introduction to HCS12 Assembly Language

这里写图片描述

2-7 Assembling and Linking an HCS12 Program

1、链接顺序

这里写图片描述

这里写图片描述

2、例子如下

这里写图片描述

这里写图片描述

这里写图片描述

3、Executing a Program Byte by Byte

这里写图片描述

2-8 Stack and Data Transfer Instructions

1、How Stacks are Accessed in the HCS12

这里写图片描述

2、Pushing onto the Stack

•Stack Pointer points to last used location of the stack
–SP is decremented each time we push
–This is a common convention

这里写图片描述

3、Pulling From the Stack

这里写图片描述

这里写图片描述

sp在ram最后

这里写图片描述

这里写图片描述

这里写图片描述

**4、(重要)Stack Instructions & Data Transfer Instructions

这里写图片描述

这里写图片描述

Ram area can be thought of as a large number of register

We can rename them as long as we do not use reserved names for SFR’s

三、Chapter 3 Branch, Call and Time Delay Loop

3-1 循环

1、Using instruction BNE for Looping

•BNE stands for Branch if Not equal to 0

•For example

这里写图片描述

2、Using Ram for Counters

这里写图片描述

这里写图片描述

Limitation of previous example
•Because Count is an 8 bit register:
–Maximum of 255 times or FF loops
–One way to overcome this is a nested loop

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

**3、(重要)Other Conditional Jumps

这里写图片描述

这里写图片描述

这里写图片描述

4、Short Conditional Branches

•Target must be within 128 bytes of the contents of PC
•These are 2 bytes instructions
•First byte is opcode
•Second byte is relative address to PC
•Value of second byte may be between -127 and +128
•Jump forward on positive, backwards on negative
•Target address is sum of second byte and PC of next instruction

这里写图片描述

5、Long Conditional Branches

这里写图片描述

这里写图片描述

6、Unconditional Branch Instruction

这里写图片描述

Branching Using the $ Sign

HERE JMP HERE ;EQUIVALENT TO JMP $

HERE BRA HERE ;EQUIVALENT TO BRA $

3-2 JSR and CALL Instructions

1、JSR – Jump to Subroutine

这里写图片描述

这里写图片描述

2、JSR Instruction and Role of Stack

这里写图片描述

这里写图片描述

这里写图片描述

Complement A,即 COMA 指令,A 的反码

这里写图片描述

Another List Example

这里写图片描述

3、Call

这里写图片描述

这里写图片描述

4、CALL vs. JSR

•Assume your particular HCS12 is equipped with 32K on chip Flash ROM.
–Which command would you use?
–JSR is 3 byte instruction and saves ROM
–We do not need to use CALL because we will not go out of 64 KB range

5、Delay Calculation for HCS12

这里写图片描述

**6、(重要)HCS12 Call Instruction Summary

这里写图片描述

7、Pipelining

这里写图片描述

这里写图片描述

8、Instruction Queue and Branch Penalty

这里写图片描述

这里写图片描述

9、Access Description

这里写图片描述

这里写图片描述

Bottom Line

•Use timers for more accurate software generated delays
•This is covered in detail in Chapter 9

3-3 Programs Using Indexed Addressing Mode

变址寻址,用X,Y

1、Clearing RAM Locations Using a Loop

这里写图片描述

Clearing Ram Locations with loop 2 bytes at once! Nothing but net

这里写图片描述

2、Using the MOV Command

这里写图片描述

MOVB Can Replace Combination of LDAA and STAA

这里写图片描述

这里写图片描述

四、Chapter 4 HCS12/9S12 I/O PORT PROGRAMMING

4-1

1、Objectives

这里写图片描述

2、I/O Ports and their functions

QFP = Quad Flat Package
这里写图片描述

**3、(重要)Ports in the MC9S12D Family

这里写图片描述

这里写图片描述

这里写图片描述

4、DDR Register and its role in outputting and inputting data

Many of the ports in the 9S12 may be used for either input or output
- DDR register contents determine the Port function at a given point in the program

Writing all 1’s to DDRx configures the Port as an output port and we can subsequently write to the Port itsef

Conversely, writing all 0’s to DDRx configures the Port as an input and we may subsequently read from it.

All ports are configured as input after reset

; code segment to toggle PORTB
    LDAA    #$FF   ; A IS ALL ONES
    STAA    DDRB    ; CONFIGURES PORT B AS OUTPUT
L1  LDAA    #$55   ; A = 55 H
    STAA    PORTB   ; PORT B IS 0101 0101 B
;NOTE THAT COMPLEMENT OF 0101 0101 IS 1010 1010 B OR AA H
    JSR DELAY   ; ZZZZ
    LDAA    #$AA   ; A = AA H
    STAA    PORTB   ; PORT B IS TOGGLED
    JSR DELAY   ; ZZZZ
    BRA L1
; HERE IS ANOTHER WAY TO SKIN THE TOGGLE PORTB CODE
    MOVB    #$FF,DDRB  ; CONFIGURE AS OUTPUT
L1  MOVB    #$55,PORTB ; OUTPUT TO PORTB
    JSR DELAY       ; ZZZZ
    MOVB    #$AA,PORTB ; OUTPUT COMPLIMENT OF 55 H TO PORTB
    JSR DELAY       ; ZZZZ
    BRA L1      ; TRY IT AGAIN FROM THE TOP

5、Register Addresses for MC9S12DP512 Ports

这里写图片描述

; PROGRAM TO READ PTH, OPERATE ON IT, THEN STORE RESULT IN PORTB
    MOVB    #$FF,DDRB  ;PORT B IS OUTPUT
    MOVB    #00,DDRH    ;PORT H IS INPUT
L2  LDAA    PTH     ; READ FROM PORT H
    ADDA    #5      ; OPERATE ON IT
    STAA    PORTB       ; RESULT IN PORTB
    BRA L2      ; INFINITE LOOP

6、Dual Role of Ports A and B

In expanded mode(直接访问内存地址) the HCS12 uses Port A and Port B for address/data multiplexing allowing connection to external RAM and ROM

这里写图片描述

7、ERRATA

Port E, and Ports H thru T also have alternative functions and uses in expanded mode.

Analog to digital converter Pins

Depending on the package either 1 or 2, 8 channel ADC’s are available, (122 pin LQFP 2 are available)

We can use the ADC pins for I/O if not used by ADC

4-2 I/O BIT MANIPULATION

1、Bit addressability of I/O Ports(单bit寻址)

Some times it is convenient to access individual bits of Ports and RAM addresses

这里写图片描述

BSET & BCLR

; PROGRAM TO TOGGLE PB2 AND PB0
    BSET    DDRB,%00000101  ; THIS MAKES PB2 AN PB0 OUTPUT PINS
AGAIN   BSET    PORTB,%00000101 ; PB2 AND PB0 ARE HIGH
    JSR DELAY       ; ZZZZ
    BCLR    PORTB,%00000101 ; PB2 AND PB0 ARE LOW
    JSR DELAY       ; ZZZZ
    BRA AGAIN       ; INFINITE LOOP

2、DUTY CYCLE SQUARE WAVE

; PROGRAM TO CREATE A 50% DUTY CYCLE SQUARE WAVE ON PORTA BIT 0
    BSET    DDRA,%00000001  ; BIT ZERO IS OUTPUT
HERE    BSET    PORTA,%00000001 ; PA0 IS HIGH
    JSR DELAY       ; ZZZZ
    BCLR    PORTA,%00000001 ; PA0 IS LOW
    JSR DELAY       ; ZZZZ
    BRA HERE        ; INFINITE LOOP
; PROGRAM TO CREATE A 66% DUTY CYCLE SQUARE WAVE ON BIT 4 OF PORT A
    BSET    DDRA,$04   ; DDRA BIT 4 IS OUTPUT
BACK    BSET    PORTA,$04  ; BIT 4 IS HIGH
    JSR DELAY       ; ONE RINGY DINGY
    JSR DELAY       ; TWO RINGY DINGIES
    BCLR    PORTA,$04  ; BIT 4 IS LOW
    JSR DELAY       ; ONE DELAY
    BRA BACK        ;  INFINITE LOOP

3、

; PROGRAM TO MONITOR PB2 BIT UNTIL IS BECOMES HIGH THEN WRITE A VALUE TO
; PORT A THEN SEND A HIGH TO LOW PULSE TO PE3
    BCLR    DDRB,%0000100       ; PB2 IS INTPUT
    LDAA    #$FF           ; VALUE OF A IS FF H
    STAA    DDRA            ; A IS OUTPUT
    LDAA    #$45           ; VALUE OF A IS 45 H
AGAIN   BRSET   PORTB,%00000100,OVER    ; BRANCH TO OVER IF PB2 IS HIGH
    BRA AGAIN           ; LOOP UNTIL, MYSTERIOUSLY, PB2
                    ; IS LOW
OVER    STAA    PORTA           ; WRITING 45 H TO PORT A
    BSET    PORTE,%00001000     ; PE3 IS HIGH
    BCLR    PORTE,%00001000     ; PE3 IS LOW
; ANOTHER WAY TO ACCOMPLISH THE PREVIOUS EXAMPLE USING BRCLR
; INSTRUCTION
    BCLR    DDRB,%00000100      ; PB2 IS INPUT
    LDAA    #$FF           ; A = FF H
    STAA    DDRA            ; PORT A IS OUTPUT
    BSET    DDRE,%00001000      ; PE3 IS OUTPUT
    LDAA    #$45           ; A = 45 H
AGAIN   BRCLR   PORTB,%00000100,AGAIN   ; CHECK IF PB2 IS LOW, IF SO BRANCH
                    ; TO AGAIN
    STAA    PORTA           ; ELSE WRITE PORT A
    BSET    PORTE,%00001000     ; PE3 IS HIGH
    BCLR    PORTE,%00001000     ; PE3 IS LOW

3、monitor

; THINK ABOUT THE APPLICATION OF ALARM MONITORING.  WE COULD USE PB3 AS 
; THE BIT THAT MONITORS THIS CONDITION, AND FURTHER ASSUME THAT IT IS
; PULLED LOW WHEN THE DOOR IS OPEN, IT IS A REQUIREMENT TO SEND A HIGH TO
; LOW PULSE TO PE5 TO TURN ON A BUZZER
    BCLR    DDRB,%00001000      ; PB3 IS INPUT
    BSET    DDRE,%00100000      ; PE5 IS OUTPUT
HERE    BRSET   PORTB,%00001000,HERE    ; BRANCH IF PB3 IS HIGH TO HERE
    BSET    PORTE,%00100000     ; PE5 IS HIGH
    BCLR    PORTE,%00100000     ; PE5 IS LOW

附加:

1、Branch instructions for Signed numbers

这里写图片描述

2、Show how the cpu would subtract $05 from $43.

这个时候需要考虑到补码,43H-05H=3EH,也就是0100 0011 - 0000 0101,这个时候减去这个数相当于加上这个数的反码,0100 0011 + 1111 1011 = 0011 1110

五、Chapter 5 Arithmetic, Logic Instructions and Programs

5-1

1、Learning Objectives

Upon completion, Students will be able to:

Define the range of numbers in HCS12 for unsigned data
Code addition and subtraction of numbers for unsigned numbers
Perform addition of BCD data
Code HCS12 multiplication a division of unsigned numbers
Code HCS12 logic instructions: AND, OR, and EX-OR
Code HCS12 assembly instructions for bit shift and rotate
Use HCS12 logic instructions for bit manipulation
Use Compare for program control
Code HCS12 rotate instructions and data serialization
Explain BCD system of data representation
Contrast and compare packed and unpacked BCD data
Code HCS12 programs for ASCII and BCD data conversion
Define the range of numbers possible in HCS12 for signed data

2、Example using ADCA(带carry的加)

; Program to add two 16 bit numbers using ADCA instruction.  The numbers are 3CE7
; H and 3B8D H.  Assume big endian convention, and 3B8D are stored in locations 807
; and 806.  The result is stored in locations 808 and 809
    LDAA    #$E7       ; A = VALUE OF FIRST NUMBER LOW BYTE
    ADDA    $807       ; LOCATION OF NEXT LOW BYTE 
                ; E7 + 8D = 174 AND C = 1
    STAA    $809       ; STORE ACCORDING TO CONVENTION
    LDAA    #$3C       ; A = VALUE OF FIRST NUMBER HIGH BYTE
    ADCA    $806       ; A = A + VALUE OF NEXT HIGH BYTE + 1
    STAA    $808       ; STORE RESULTANT HIGH BYTE BIG ENDIAN

3、Adding Multi-Byte Numbers

; Program to add two multi-byte numbers
MYCOUNT EQU $800       ; ADDRESS OF COUNTER VARIABLE
        LDAA    #4      ; A = 4 D
        STAA    MYCOUNT ; VALUE OF MYCOUNT IS 4 D
        CLRA            ; A = 0
        LDX #$813      ; X POINTER
        LDY #$853      ; Y POINTER
        CLC         ; CLEAR CARRY FLAG
BACK        LDAA    0,X     ; LOAD BYTE AT POINTED ADDRESS
        ADCA    0,Y     ; ADD BYTE AT POINTED ADDRESS
        STAA    0,Y     ; STORE WITH CARRY
        DEX         ; DECREMENT POINTER X
        DEY         ; DECREMENT POINTER Y
        DEC MYCOUNT ; DECREMENT LOOP COUNTER
        BNE BACK        ; BRANCH IF COUNTER NE 0

4、DAA Instruction

DAA stands for Decimal Adjust Accuumulator

  • Only works with A register
  • Adds 6 to lower nibble and higher nibble if necessary, otherwise no effect

Consider the following

LDAA    #$47		; A = $47
ADDA    #$25       ; A = A + 25 H  RESULT IS 6C H
DAA             ; ADUST FOR BCD ADDITION, RESULT IS 72 H

这里写图片描述

5、Subtraction of unsigned numbers

这里写图片描述

6、Neg Instruction

  • After execution of SUBA, if C = 0 the result is positive
    If C = 1, the result is negative
  • Destination has 2’s complement of result
  • NEG (negate) may be used to change this
  • NEG performs 2’s complement

这里写图片描述

; Program to subtract 6E H from 4C H
MYREG   EQU $820       ; LOCATION OF NUMBER TO BE SUBTRACTED
    LDAA    #$6E       ; A = 6E H
    STAA    MYREG       ; STORE 6E H AT LOCATION 820 H
    LDDA    #$4C       ; A = 4C H
    SUBA    MYREG       ; A = (4C-6E) = DE, INVERTED C = 1
    BCC NEXT        ; IF C = 0 BRANCH TO NEXT TARGET
    NEGA            ; TAKE 2’S COMPLEMENT OF A
NEXT    STAA    MYREG       ; RESULT IS STORED IN MYREG
; 6E = 01101110 2’S COMPLIMENT OF THIS IS 1001 0010
; AFTER THE SUBA COMMAND C =1 AND THE RESULT IS NEGATIVE WE DO NOT  
; BRANCH AND 2’S COMPLEMENT IS TAKEN AND MYREG = 22 H MAGNITUDE OF
; NEGATIVE RESULT

7、SBCA SUBTRACT WITH BORROW

  • Used for multi-byte numbers
  • Handles borrow of lower byte
  • C flag holds borrow
  • If C = 1 prior to execution, 1 is subtracted from result
; Program to subtract 2 16 bit numbers eg $2762 - $1296 assuming location 806 H
; stores 12 H and location 807 H stores 96 H, store result in same locations with big
; endian convention.  We  are looking for the result of 14CC
    LDAA    #$62       ; LOAD LOW BYTE
    SUBA    $807       ; A = 62 H96 H = CC H, C = BORROW = 1
    STAA    $807       ; STORE LOW BYTE
    LDAA    #$27       ; LOAD HIGH BYTE
    SBCA    $806       ; A = 27121 = 14 H
    STAA    $806       ; STORE HIGH BYTE
; Since these are 16 bit or 2 byte numbers, we could us the instruction SUBD
    LDD #2762       ; LOAD D REGISTER
    SUBD    $806		; SUBTRACT THE VALUES AT $806 AND $807
    STDD    $806       ; STORE RESULT

**8、(重要)Some Widely Used Arithmetic Instructions

这里写图片描述

9、Multiplication of unsigned numbers

这里写图片描述

; Multiply 25 H by 65 H
    LDAA    #$25       ; FIRST OPERAND IN A
    LDAB    #$65       ; SECOND OPERAND IN B
    MUL         ; 25 H x 65 H = E99 H IN REG D
                ; A = 0E H, B = 99 H
;
; 16 bit multiplication
    LDD #500        ; D = 500 DECIMAL
    LDY #700        ; Y = 700 DECIMAL
    EMUL            ; 500 x 700 = 350000 = 55730 H
                ; Y = 0005 H, D = 5730 H

10、Unsigned Multiplication and Division Summary

这里写图片描述

11、Unsigned Division

; divide 255 decimal by 10 decimal
    LDD #255        ; D = 255 DECIMAL
    LDX #10     ; X = 10 DECIMAL
    IDIV            ; 255/10 = 25 REMAINDER 5
`               ; X = 25 DECIMAL AND D = 5
;
; divide 90FF24 H by 1000 decimal
;
    LDD #$FF24     ; LOWER WORD
    LDY #$90       ; UPPER WORD
                ; 90FF24 H = 9502500 DECIMAL
    LDX #1000       ; X = 1000 DECIMAL
    EDIV            ; Y:D/X = 9502 (251E H) REMAINDER 500 (1F4)

Division Application Example ADC

; ADC provides Hex data between 00 and FF H.  Conversion to decimal is accomplished 
; by dividing by 10  repetitively  and saving remainder.  This program converts FD H to 
; decimal with byte by byte division using locations 822824 H to store results where 824 freescale飞思卡尔 HCS12 系列单片机bootloader详解

Hedera 共识服务(HCS)详解

12代i7和i5集成显卡区别

华为HCS之私有云工具FCD搭建

具有 HCS 可插拔共识的 Corda

PHP 索引的主题标题由hcs编辑EDITED BY ME