FZU-2075 Substring(后缀数组)
Posted 真正的强者,从不埋怨黎明前的黑暗!!!
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了FZU-2075 Substring(后缀数组)相关的知识,希望对你有一定的参考价值。
Description
Given a string, find a substring of it which the original string contains exactly n such substrings.
Input
There are several cases. The first line of each case contains an integer n.The second line contains a string, no longer than 100000.
Output
If the such substring doesn‘t exist, output "impossible", else output the substring that appeared n times in the original string.If there are multiple solutions, output lexicographic smallest substring.
Sample Input
2 ababba
Sample Output
ab
题目大意:给一个字符串,找出其恰好出现n次的字典序最小的子串。
题目分析:将所有的子串排序后,定义n块为相邻的n个子串构成的字符串集合,如果某个n块的lca大于包含它的n+1块的lca,那么这个n块的lca便是恰好出现了n次的子串。
代码如下:
//# define AC # ifndef AC # include<iostream> # include<cstdio> # include<cstring> # include<vector> # include<queue> # include<list> # include<cmath> # include<set> # include<map> # include<string> # include<cstdlib> # include<algorithm> using namespace std; const int N=100000; int SA[N+5]; int tSA[N+5]; int rk[N+5]; int cnt[N+5]; int height[N+5]; int *x,*y; bool same(int i,int j,int k,int n) { if(y[i]!=y[j]) return false; if(i+k<n&&j+k>=n) return false; if(i+k>=n&&j+k<n) return false; return y[i+k]==y[j+k]; } void buildSA(char* s) { x=rk,y=tSA; int m=130; int n=strlen(s); for(int i=0;i<m;++i) cnt[i]=0; for(int i=0;i<n;++i) ++cnt[x[i]=s[i]]; for(int i=1;i<m;++i) cnt[i]+=cnt[i-1]; for(int i=n-1;i>=0;--i) SA[--cnt[x[i]]]=i; for(int k=1;k<=n;k<<=1){ int p=0; for(int i=n-k;i<n;++i) y[p++]=i; for(int i=0;i<n;++i) if(SA[i]>=k) y[p++]=SA[i]-k; for(int i=0;i<m;++i) cnt[i]=0; for(int i=0;i<n;++i) ++cnt[x[y[i]]]; for(int i=1;i<m;++i) cnt[i]+=cnt[i-1]; for(int i=n-1;i>=0;--i) SA[--cnt[x[y[i]]]]=y[i]; p=1; swap(x,y); x[SA[0]]=0; for(int i=1;i<n;++i) x[SA[i]]=same(SA[i],SA[i-1],k,n)?p-1:p++; if(p>=n) break; m=p; } } void getHeight(char* s) { int n=strlen(s); int k=0; for(int i=0;i<n;++i) rk[SA[i]]=i; for(int i=0;i<n;++i){ if(rk[i]==0) height[rk[i]]=k=0; else{ if(k) --k; int j=SA[rk[i]-1]; while(s[i+k]==s[j+k]) ++k; height[rk[i]]=k; } } } char s[N+5]; int st[N+5][20]; void spare_table() { int n=strlen(s); for(int i=1;i<n;++i) st[i][0]=height[i]; for(int k=1;(1<<k)<=n;++k){ for(int i=1;i+(1<<k)-1<n;++i){ st[i][k]=min(st[i][k-1],st[i+(1<<(k-1))][k-1]); } } } int getST(int l,int r) { int k=0; while((1<<(k+1))<=r-l+1) ++k; return min(st[l][k],st[r-(1<<k)+1][k]); } string solve(int m) { string res=""; int n=strlen(s); int a,b,c; for(int i=0;i+m-1<n;++i){ a=b=c=0; if(m==1) a=n-SA[i]; else a=getST(i+1,i+m-1); if(i+m<n) b=getST(i+1,i+m); if(i>0) c=getST(i,i+m-1); if(a>b&&a>c){ for(int j=SA[i];j<SA[i]+a;++j) res+=s[j]; return res; } } return "impossible"; } int main() { int m; while(~scanf("%d",&m)) { scanf("%s",s); buildSA(s); getHeight(s); spare_table(); cout<<solve(m)<<endl; } return 0; } # endif
以上是关于FZU-2075 Substring(后缀数组)的主要内容,如果未能解决你的问题,请参考以下文章
SPOJ SUBLEX - Lexicographical Substring Search 后缀自动机 / 后缀数组