向MapReduce转换:通过部分成绩计算矩阵乘法
Posted 杨鑫newlfe
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了向MapReduce转换:通过部分成绩计算矩阵乘法相关的知识,希望对你有一定的参考价值。
代码共分为四部分:
<strong><span style="font-size:18px;">/*** * @author YangXin * @info 封装共现关系列 */ package unitSix; import java.io.IOException; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.mapreduce.Mapper; import org.apache.mahout.cf.taste.hadoop.item.VectorOrPrefWritable; import org.apache.mahout.math.VectorWritable; public class CooccurrenceColumnWrapperMapper extends Mapper<IntWritable, VectorWritable, IntWritable, VectorOrPrefWritable>{ public void map(IntWritable key, VectorWritable value, Context context) throws IOException, InterruptedException{ context.write(key, new VectorOrPrefWritable(value.get())); } } </span></strong>
<strong><span style="font-size:18px;">/*** * @author YangXin * @info 分割用户数量 */ package unitSix; import java.io.IOException; import java.util.Iterator; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.mapreduce.Mapper; import org.apache.mahout.cf.taste.hadoop.item.VectorOrPrefWritable; import org.apache.mahout.math.VarLongWritable; import org.apache.mahout.math.Vector; import org.apache.mahout.math.VectorWritable; public class UserVectorSplitterMapper extends Mapper<VarLongWritable, VectorWritable, IntWritable, VectorOrPrefWritable>{ public void map(VarLongWritable key, VectorWritable value, Context context) throws IOException, InterruptedException{ long userID = key.get(); Vector userVector = value.get(); Iterator<Vector.Element> it = userVector.nonZeroes().iterator(); IntWritable itemIndexWritable = new IntWritable(); while(it.hasNext()){ Vector.Element e = it.next(); int itemIndex = e.index(); float preferenceValue = (float)e.get(); itemIndexWritable.set(itemIndex); context.write(itemIndexWritable, new VectorOrPrefWritable(userID, preferenceValue)); } } }</span></strong>
<strong><span style="font-size:18px;">/*** * @author YangXin * @info 计算部分推荐向量 */ package unitSix; import java.io.IOException; import java.util.List; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.mapreduce.Mapper; import org.apache.mahout.cf.taste.hadoop.item.VectorAndPrefsWritable; import org.apache.mahout.math.VarLongWritable; import org.apache.mahout.math.Vector; import org.apache.mahout.math.VectorWritable; public class PartialMultiplyMapper extends Mapper<IntWritable, VectorAndPrefsWritable, VarLongWritable, VectorWritable>{ public void map(IntWritable key, VectorAndPrefsWritable vectorAndPrefsWritable, Context context) throws IOException, InterruptedException{ Vector cooccurrenceColumn = vectorAndPrefsWritable.getVector(); List<Long> userIDs = vectorAndPrefsWritable.getUserIDs(); List<Float> prefValues = vectorAndPrefsWritable.getValues(); for(int i = 0; i < userIDs.size(); i++){ long userID = userIDs.get(i); float prefValue = prefValues.get(i); Vector partialProduct = cooccurrenceColumn.times(prefValue); context.write(new VarLongWritable(userID), new VectorWritable(partialProduct));; } } } </span></strong>
<strong><span style="font-size:18px;">/*** * @author YangXin * @info 实现部分成绩的combiner */ package unitSix; import java.io.IOException; import org.apache.hadoop.mapreduce.Reducer; import org.apache.mahout.math.VarLongWritable; import org.apache.mahout.math.Vector; import org.apache.mahout.math.VectorWritable; public class AggregateCombiner extends Reducer<VarLongWritable, VectorWritable, VarLongWritable, VectorWritable>{ public void reduce(VarLongWritable key, Iterable<VectorWritable> values, Context context) throws IOException, InterruptedException{ Vector partial = null; for(VectorWritable vectorWritable : values){ partial = partial == null ? vectorWritable.get() : partial.plus(vectorWritable.get()); } context.write(key, new VectorWritable(partial)); } } </span></strong>
以上是关于向MapReduce转换:通过部分成绩计算矩阵乘法的主要内容,如果未能解决你的问题,请参考以下文章