HDU Atlantis 线段树 表达区间

Posted stupid_one

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了HDU Atlantis 线段树 表达区间相关的知识,希望对你有一定的参考价值。

http://acm.hdu.edu.cn/showproblem.php?pid=1542

我的做法是把x轴的表示为线段,然后更新y

 

不考虑什么优化的话,开始的时候,把他们表达成线段,并按y排序,然后第一次加入线段树的应该就是最底下那条,然后第二条的时候,我们可以询问第二条那段区间,有多少是已经被覆盖的,然后把面积算上就可以。

所以如果区间都是整数,而且数值很少,那么就是线段树成段覆盖的问题了。但是这里是浮点数而且很大。

所以只能把它离散化。

这个时候线段树就不是连续的了,这里就有bug,问题就变成了怎么表达这颗线段树了。

思路是把它弄成L + 1 == R就是叶子节点,这样的话,每个节点都保存了一个区间了,

例如

要保存5、10、15、30

一般的线段树

      5、30

   5、10   15、30

  5    10    15         30

但是这样怎么表示[10, 15]这段区间呢?

所以把线段树变成

      5、30

    5、10   10、 30

        10、15  15、30

就行了。

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#define ios ios::sync_with_stdio(false)
using namespace std;
#define inf (0x3f3f3f3f)
typedef long long int LL;

#include <iostream>
#include <sstream>
#include <vector>
#include <set>
#include <map>
#include <queue>
#include <string>

int n;
const int maxn = 2e2 + 20;
struct node {
    int L, R;
    double x1, x2, y;
    int cover;
} seg[maxn << 2];
struct info {
    double x1, x2, y;
    int flag;
    bool operator < (const struct info & rhs) const {
        return y < rhs.y;
    }
} in[maxn];
double xx[maxn];
void build(int L, int R, int cur) {
    seg[cur].cover = 0;
    seg[cur].x1 = xx[L];
    seg[cur].x2 = xx[R];
    seg[cur].y = -1;
    seg[cur].L = L;
    seg[cur].R = R;
    if (L + 1 == R) { //两个节点作为一个叶子
        return;
    }
    int mid = (L + R) >> 1;
    build(L, mid, cur << 1);
    build(mid, R, cur << 1 | 1);
}
double upDate(int begin, int end, double y, int flag, int cur) {
    if (end <= seg[cur].L || begin >= seg[cur].R) return 0;
    if (seg[cur].L + 1 == seg[cur].R) {
        if (seg[cur].cover) {
            double ans = (seg[cur].x2 - seg[cur].x1) * (y - seg[cur].y);
            seg[cur].cover += flag;
            seg[cur].y = y;
            return ans;
        } else {
            seg[cur].cover += flag;
            seg[cur].y = y;
            return 0;
        }
    }
    double ans = upDate(begin, end, y, flag, cur << 1) + upDate(begin, end, y, flag, cur << 1 | 1);
    return ans;
}
void work() {
    int lenin = 0;
    int lenxx = 0;
    for (int i = 1; i <= n; ++i) {
        double xx1, xx2, yy1, yy2;
        scanf("%lf%lf%lf%lf", &xx1, &yy1, &xx2, &yy2);
        lenin++;
        in[lenin].x1 = xx1;
        in[lenin].x2 = xx2;
        in[lenin].y = yy1;
        in[lenin].flag = 1;
        lenxx++;
        xx[lenxx] = xx1;

        lenin++;
        in[lenin].x1 = xx1;
        in[lenin].x2 = xx2;
        in[lenin].y = yy2;
        in[lenin].flag = -1;
        lenxx++;
        xx[lenxx] = xx2;
    }
    sort(in + 1, in + 1 + lenin);
    sort(xx + 1, xx + 1 + lenxx);
    lenxx = unique(xx + 1, xx + 1 + lenxx) - (xx + 1);
    build(1, lenxx, 1);
    double ans = 0;
    const int root = 1;
    for (int i = 1; i <= lenxx; ++i) {
        printf("%f**\\n", xx[i]);
    }
    for (int i = 1; i <= lenin; ++i) {
        int L = lower_bound(xx + 1, xx + 1 + lenxx, in[i].x1) - xx;
        int R = lower_bound(xx + 1, xx + 1 + lenxx, in[i].x2) - xx;
//        cout << L << " " << R << endl;
        ans += upDate(L, R, in[i].y, in[i].flag, root);
    }
    static int f = 0;
    printf("Test case #%d\\n", ++f);
    printf("Total explored area: %0.2f\\n", ans);
//    printf("%0.2f\\n", ans);
}
int main() {
#ifdef local
    freopen("data.txt","r",stdin);
#endif
    while (scanf("%d", &n) != EOF && n) {
        work();
        printf("\\n");
    }
    return 0;
}
View Code

 

#include <bits/stdc++.h>
#define IOS ios::sync_with_stdio(false)
using namespace std;
#define inf (0x3f3f3f3f)
typedef long long int LL;
const int maxn = 1e3 + 20;
struct Node {
    double x1, x2, y;
    int L, R;
    int cover;
}seg[maxn << 2];
vector<double> vc;
int n;
struct Info {
    double x1, x2, y;
    int cover;
    bool operator < (const struct Info & rhs) const {
        return y < rhs.y;
    }
}fuck[maxn * 2];
void build(int L, int R, int cur) {
    seg[cur].L = L, seg[cur].R = R;
    seg[cur].x1 = vc[L], seg[cur].x2 = vc[R];
    seg[cur].y = -inf;
    seg[cur].cover = 0;
    if (L + 1 == R) return;
    int mid = (L + R) >> 1;
    build(L, mid, cur << 1);
    build(mid, R, cur << 1 | 1);
}
double add(int x1, int x2, double y, int cover, int cur) {
    if (x2 <= seg[cur].L || x1 >= seg[cur].R) return 0;
    if (seg[cur].L + 1 == seg[cur].R) {
        if (seg[cur].cover) {
            double res = (y - seg[cur].y) * (seg[cur].x2 - seg[cur].x1);
            seg[cur].cover += cover;
            seg[cur].y = y; // 更新最大值y
            return res;
        } else {
            seg[cur].cover += cover;
            seg[cur].y = y;
            return 0;
        }
    }
    return add(x1, x2, y, cover, cur << 1) + add(x1, x2, y, cover, cur << 1 | 1);
}
void work() {
    vc.clear();
    vc.push_back(-1.0);
    int len = 0;
    for (int i = 1; i <= n; ++i) {
        double x1, y1, x2, y2;
        cin >> x1 >> y1 >> x2 >> y2;
        ++len;
        fuck[len].x1 = x1, fuck[len].x2 = x2, fuck[len].y = y1, fuck[len].cover = 1;
        ++len;
        fuck[len].x1 = x1, fuck[len].x2 = x2, fuck[len].y = y2, fuck[len].cover = -1;
        vc.push_back(x1);
        vc.push_back(x2);
    }
    sort(vc.begin(), vc.end());
    sort(fuck + 1, fuck + 1 + len);
    build(1, vc.size(), 1);
    double ans = 0;
    for (int i = 1; i <= len; ++i) {
        int x1 = lower_bound(vc.begin(), vc.end(), fuck[i].x1) - vc.begin();
        int x2 = lower_bound(vc.begin(), vc.end(), fuck[i].x2) - vc.begin();
        ans += add(x1, x2, fuck[i].y, fuck[i].cover, 1);
    }
    static int f = 0;
    printf("Test case #%d\\n", ++f);
    printf("Total explored area: %.2f\\n\\n", ans);
}

int main() {
#ifdef local
    freopen("data.txt", "r", stdin);
//    freopen("data.txt", "w", stdout);
#endif
    while (cin >> n && n) work();
    return 0;
}
View Code

 

 

跪着看这篇blog想的

http://www.cnblogs.com/ka200812/archive/2011/11/13/2247064.html

 

 

 

2017年8月15日 13:35:12

http://acm.hdu.edu.cn/showproblem.php?pid=1255

只需要cover >= 2才计算

#include <bits/stdc++.h>
#define IOS ios::sync_with_stdio(false)
using namespace std;
#define inf (0x3f3f3f3f)
typedef long long int LL;
const int maxn = 1e3 + 20;
struct Node {
    double x1, x2, y;
    int L, R;
    int cover;
}seg[maxn << 2];
vector<double> vc;
int n;
struct Info {
    double x1, x2, y;
    int cover;
    bool operator < (const struct Info & rhs) const {
        return y < rhs.y;
    }
}fuck[maxn * 2];
void build(int L, int R, int cur) {
    seg[cur].L = L, seg[cur].R = R;
    seg[cur].x1 = vc[L], seg[cur].x2 = vc[R];
    seg[cur].y = -inf;
    seg[cur].cover = 0;
    if (L + 1 == R) return;
    int mid = (L + R) >> 1;
    build(L, mid, cur << 1);
    build(mid, R, cur << 1 | 1);
}
double add(int x1, int x2, double y, int cover, int cur) {
    if (x2 <= seg[cur].L || x1 >= seg[cur].R) return 0;
    if (seg[cur].L + 1 == seg[cur].R) {
        if (seg[cur].cover >= 2) {
            double res = (y - seg[cur].y) * (seg[cur].x2 - seg[cur].x1);
            seg[cur].cover += cover;
            seg[cur].y = y; // 更新最大值y
            return res;
        } else {
            seg[cur].cover += cover;
            seg[cur].y = y;
            return 0;
        }
    }
    return add(x1, x2, y, cover, cur << 1) + add(x1, x2, y, cover, cur << 1 | 1);
}
void work() {
    vc.clear();
    vc.push_back(-1.0);
    int len = 0;
    scanf("%d", &n);
    for (int i = 1; i <= n; ++i) {
        double x1, y1, x2, y2;
        scanf("%lf%lf%lf%lf", &x1, &y1, &x2, &y2);
        ++len;
        fuck[len].x1 = x1, fuck[len].x2 = x2, fuck[len].y = y1, fuck[len].cover = 1;
        ++len;
        fuck[len].x1 = x1, fuck[len].x2 = x2, fuck[len].y = y2, fuck[len].cover = -1;
        vc.push_back(x1);
        vc.push_back(x2);
    }
    sort(vc.begin(), vc.end());
    sort(fuck + 1, fuck + 1 + len);
    build(1, vc.size(), 1);
    double ans = 0;
    for (int i = 1; i <= len; ++i) {
        int x1 = lower_bound(vc.begin(), vc.end(), fuck[i].x1) - vc.begin();
        int x2 = lower_bound(vc.begin(), vc.end(), fuck[i].x2) - vc.begin();
        ans += add(x1, x2, fuck[i].y, fuck[i].cover, 1);
    }
    printf("%.2f\\n", ans);
}

int main() {
#ifdef local
    freopen("data.txt", "r", stdin);
//    freopen("data.txt", "w", stdout);
#endif
    int t;
    scanf("%d", &t);
    while (t--) work();
    return 0;
}
View Code

 

http://codeforces.com/contest/610/problem/D

这题要用到另一种方法

不然TLE

这题是把线条表达成一个长度大小是1的矩形

如果矩形表达成[x1, x2],那么边长应该是x2 - x1 + 1(因为在直线的意义下所有点都覆盖了)

所以要把矩形表达成[x1 - 1, x2],同时要注意统一化,就是水平的和垂直的都是按照这个方向改。

x轴要固定向左端减小。

#include <bits/stdc++.h>
#define IOS ios::sync_with_stdio(false)
using namespace std;
#define inf (0x3f3f3f3f)
typedef long long int LL;
const int maxn = 400000 + 20;
struct Info {
    int x1, x2, cover;
    LL y;
    bool operator < (const struct Info & rhs) const {
        return y < rhs.y;
    }
} fuck[maxn];
vector<int> vc;
struct Node {
    int L, R;
    int x1, x2, y;
    int cover;
}seg[maxn << 2];
void build(int L, int R, int cur) {
    seg[cur].L = L, seg[cur].R = R;
    seg[cur].x1 = vc[L], seg[cur].x2 = vc[R];
    seg[cur].y = 0;
    seg[cur].cover = 0;
    if (L + 1 == R) return;
    int mid = (L + R) >> 1;
    build(L, mid, cur << 1);
    build(mid, R, cur << 1 | 1);
}
void pushUp(int cur) {
    if (seg[cur].cover) {
        seg[cur].y = vc[seg[cur].R] - vc[seg[cur].L];
    } else if (seg[cur].L + 1 == seg[cur].R) {
        seg[cur].y = 0;
    } else {
        seg[cur].y = seg[cur << 1].y + seg[cur << 1 | 1].y;
    }
}
void add(int be, int en, int y, int cover, int cur) {
    if (seg[cur].L > en || seg[cur].R < be) return;
    if (seg[cur].L >= be && seg[cur].R <= en) {
        seg[cur].cover += cover;
        pushUp(cur);
        return;
    }
    add(be, en, y, cover, cur << 1);
    add(be, en, y, cover, cur << 1 | 1);
    pushUp(cur);
}
void work() {
    vc.clear();
    vc.push_back(-inf);
    int n, len = 0;
    scanf("%d", &n);
    for (int i = 1; i <= n; ++i) {
        int x1, y1, x2, y2;
        scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
        if (x1 == x2) {
            if (y1 > y2) swap(y1, y2);
            ++len;
            fuck[len].x1 = x1 - 1, fuck[len].x2 = x2, fuck[len].y = y1 - 1, fuck[len].cover = 1;
            ++len;
            fuck[len].x1 = x1 - 1, fuck[len].x2 = x2, fuck[len].y = y2, fuck[len].cover = -1;
            vc.push_back(x1 - 1);
            vc.push_back(x2);
        } else {
            if (x1 > x2) swap(x1, x2);
            ++len;
            fuck[len].x1 = x1 - 1, fuck[len].x2 = x2, fuck[len].y = y1, fuck[len].cover = -1;
            ++len;
            fuck[len].x1 = x1 - 1, fuck[len].x2 = x2, fuck[len].y = y1 - 1, fuck[len].cover = 1;
            vc.push_back(x1 - 1);
            vc.push_back(x2);
        }
    }
    sort(vc.begin(), vc.end());
//    vc.erase(unique(vc.begin(), vc.end()), vc.begin());
    sort(fuck + 1, fuck + 1 + len);
    build(1, vc.size(), 1);
    LL ans = 0;
    for (int i = 1; i < len; ++i) {
        int x1 = lower_bound(vc.begin(), vc.end(), fuck[i].x1) - vc.begin();
        int x2 = lower_bound(vc.begin(), vc.end(), fuck[i].x2) - vc.begin();
        add(x1, x2, fuck[i].y, fuck[i].cover, 1);
        ans += seg[1].y * (fuck[i + 1].y - fuck[i].y);
    }
    cout << ans << endl;
}

int main() {
#ifdef local
    freopen("data.txt", "r", stdin);
//    freopen("data.txt", "w", stdout);
#endif
    work();
    return 0;
}
View Code

 

求解区间

[L1, R1]、[L2, R2].....这样区间的,线段树的叶子节点一定要维护两个值。才算是叶子节点。就是上面所说的

主要是:因为这些区间不是连续的。

例如

要保存5、10、15、30

一般的线段树

      5、30

   5、10   15、30

  5    10    15         30

是无法得到a[4] - a[1] = 25的区间长度的。

如果你直接跑线段树,就是左右儿子的总和加上来。这样就是10 - 5 + 30 - 15 = 20

漏了一段,那一段?10--15

 

所以表示成

           5 10 15 30

  5  10            10 15  30

                    10 15      15 30

是一种好的选择,因为这和一般的线段树不同,一般的线段树都是连续的整数,现在是分散的。所以要这样来代表

#include <bits/stdc++.h>
#define IOS ios::sync_with_stdio(false)
using namespace std;
#define inf (0x3f3f3f3f)
typedef long long int LL;
#define lson L, mid, cur << 1
#define rson mid, R, cur << 1 | 1
#define root 1, all, 1
const int maxn = 600000 + 20;
struct Info {
    int x1, x2, cover;
    LL y;
    bool operator < (const struct Info & rhs) const {
        return y < rhs.y;
    }
} fuck[maxn];
vector<int> vc;
LL seg[maxn << 2], cov[maxn << 2];
void pushUp(int cur, int L, int R) {
    if (cov[cur]) seg[cur] = vc[R] - vc[L];
    else if (L + 1 == R) seg[cur] = 0;
    else {
        seg[cur] = seg[cur << 1] + seg[cur << 1 | 1];
    }
}
void upDate(int be, int en, int val, int L, int R, int cur) {
    if (L > en || R < be) return;
    if (L >= be && R <= en) {
        cov[cur] += val;
        pushUp(cur, L, R);
        return;
    }
    if (L + 1 == R) return;  //必须的
    int mid = (L + R) >> 1;
    upDate(be, en, val, lson);
    upDate(be, en, val, rson); //维护两个节点
    pushUp(cur, L, R);
}
void work() {
    vc.clear();
    vc.push_back(-inf);
    int n, len = 0;
    scanf("%d", &n);
    for (int i = 1; i <= n; ++i) {
        int x1, y1, x2, y2;
        scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
        if (x1 == x2) {
            if (y1 > y2) swap(y1, y2);
            ++len;
            fuck[len].x1 = x1 - 1, fuck[len].x2 = x2, fuck[len].y = y1 - 1, fuck[len].cover = 1;
            ++len;
            fuck[len].x1 = x1 - 1, fuck[len].x2 = x2, fuck[len].y = y2, fuck[len].cover = -1;
            vc.push_back(x1 - 1);
            vc.push_back(x2);
        } else {
            if (x1 > x2) swap(x1, x2);
            ++len;
            fuck[len].x1 = x1 - 1, fuck[len].x2 = x2, fuck[len].y = y1, fuck[len].cover = -1;
            ++len;
            fuck[len].x1 = x1 - 1, fuck[len].x2 = x2, fuck[len].y = y1 - 1, fuck[len].cover = 1;
            vc.push_back(x1 - 1);
            vc.push_back(x2);
        }
    }
//    for (int i = 1; i <= n; ++i) {
//        int x1, y1, x2, y2;
//        cin >> x1 >> y1 >> x2 >> y2;
//        vc.push_back(x1);
//        vc.push_back(x2);
//        ++len;
//        fuck[len].x1 = x1, fuck[len].x2 = x2, fuck[len].y = y1, fuck[len].cover = 1;
//        ++len;
//        fuck[len].x1 = x1, fuck[len].x2 = x2, fuck[len].y = y2, fuck[len].cover = -1;
//    }
    //上面注释只是普通的矩形面积交。
    sort(vc.begin(), vc.end());
    sort(fuck + 1, fuck + 1 + len);
    int all = vc.size() - 1; //只能去到-1
    LL ans = 0;
    for (int i = 1; i < len; ++i) {
        int x1 = lower_bound(vc.begin(), vc.end(), fuck[i].x1) - vc.begin();
        int x2 = lower_bound(vc.begin(), vc.end(), fuck[i].x2) - vc.begin();
        upDate(x1, x2, fuck[i].cover, root);
//        cout << seg[1] << endl;
        ans += seg[1] * (fuck[i + 1].y - fuck[i].y);
    }
    cout << ans << endl;
}

int main() {
#ifdef local
    freopen("data.txt", "r", stdin);
//    freopen("data.txt", "w", stdout);
#endif
    work();
    return 0;
}




矩形面积交数据
2
1

以上是关于HDU Atlantis 线段树 表达区间的主要内容,如果未能解决你的问题,请参考以下文章

HDU1542Atlantis

Atlantis HDU

hdu1542 Atlantis(扫描线+线段树+离散)矩形相交面积

poj1151 Atlantis (线段树+扫描线+离散化)

HDU-1542 Atlantis 线段树+扫描线

HDU - 1542 Atlantis (扫描线+线段树)