Unsupervised Deep Learning – ICLR 2017 Discoveries

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Unsupervised Deep Learning – ICLR 2017 Discoveries相关的知识,希望对你有一定的参考价值。

  1. Unsupervised Learning Using Generative Adversarial Training And Clustering – Authors: Vittal Premachandran, Alan L. Yuille

  2. An Information-Theoretic Framework for Fast and Robust Unsupervised Learning via Neural Population Infomax– Authors: Wentao Huang, Kechen Zhang

  3. Unsupervised Cross-Domain Image Generation – Authors: Yaniv Taigman, Adam Polyak, Lior Wolf

  4. Unsupervised Perceptual Rewards for Imitation Learning – Authors: Pierre Sermanet, Kelvin Xu, Sergey Levine

  5. Deep Predictive Coding Networks for Video Prediction and Unsupervised Learning – Authors: William Lotter, Gabriel Kreiman, David Cox

  6. Unsupervised sentence representation learning with adversarial auto-encoder – Authors: Shuai Tang, Hailin Jin, Chen Fang, Zhaowen Wang

  7. Unsupervised Program Induction with Hierarchical Generative Convolutional Neural Networks – Authors: Qucheng Gong, Yuandong Tian, C. Lawrence Zitnick

  8. Generalizable Features From Unsupervised Learning – Authors: Mehdi Mirza, Aaron Courville, Yoshua Bengio

  9. Reinforcement Learning with Unsupervised Auxiliary Tasks – Authors: Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David Silver, Koray Kavukcuoglu

  10. Deep Variational Bayes Filters: Unsupervised Learning of State Space Models from Raw Data – Authors: Maximilian Karl, Maximilian Soelch, Justin Bayer, Patrick van der Smagt

  11. Unsupervised Learning of State Representations for Multiple Tasks – Authors: Antonin Raffin, Sebastian Hfer, Rico Jonschkowski, Oliver Brock, Freek Stulp

  12. Unsupervised Pretraining for Sequence to Sequence Learning – Authors: Prajit Ramachandran, Peter J. Liu, Quoc V. Le

  13. Unsupervised Deep Learning of State Representation Using Robotic Priors – Authors: Timothee LESORT, David FILLIAT

  14. Deep Unsupervised Clustering with Gaussian Mixture Variational Autoencoders – Authors: Nat Dilokthanakul, Pedro A. M. Mediano, Marta Garnelo, Matthew C.H. Lee, Hugh Salimbeni, Kai Arulkumaran, Murray Shanahan

  15. Deep unsupervised learning through spatial contrasting – Authors: Elad Hoffer, Itay Hubara, Nir Ailon

https://www.youtube.com/watch?v=rK6bchqeaN8

https://amundtveit.com/

技术分享

http://mp.weixin.qq.com/s?__biz=MzI3MTA0MTk1MA==&mid=2651989467&idx=1&sn=01610b4809f7c5c31bad2589926006cd&chksm=f121512ac656d83cfa5b7566e301738d46b8097b58aea724b1a94b183077f9538871346142d3&mpshare=1&scene=23&srcid=1113gx5LrBwRORmJHjd7lZOe#rd

http://it.sohu.com/20161113/n473045543.shtml

https://baijiahao.baidu.com/s?id=1550404872422873&wfr=spider&for=pc





本文出自 “IT技术学习与交流” 博客,谢绝转载!

以上是关于Unsupervised Deep Learning – ICLR 2017 Discoveries的主要内容,如果未能解决你的问题,请参考以下文章

论文笔记 Spatial contrasting for deep unsupervised learning

paper 124:转载无监督特征学习——Unsupervised feature learning and deep learning

每日一读Joint Unsupervised Learning of Deep Representations and Image Clusters

每日一读Joint Unsupervised Learning of Deep Representations and Image Clusters

Deep Unsupervised Saliency Detection: A Multiple Noisy Labeling Perspective

数据聚类|深度聚类Unsupervised Deep Embedding for Clustering Analysis(DEC)论文研读