简单介绍一下R中的几种统计分布

Posted Little_Rookie

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了简单介绍一下R中的几种统计分布相关的知识,希望对你有一定的参考价值。

技术分享

技术分享

统计学上分布有很多,在R中基本都有描述。因能力有限,我们就挑选几个常用的、比较重要的简单介绍一下每种分布的定义,公式,以及在R中的展示。

下面先列举各种分布:

rnorm(n, mean=0, sd=1) 高斯(正态)分布
rexp(n, rate=1) ?指数分布
rgamma(n, shape, scale=1) γ分布 

rpois(n, lambda) Poisson分布
rweibull(n, shape, scale=1) Weibull分布 
rcauchy(n, location=0, scale=1) Cauchy分布 
rbeta(n, shape1, shape2) β分布 
rt(n, df) t分布 
rf(n, df1, df2) F分布 
rchisq(n, df) χ 2 分布
rbinom(n, size, prob)二项分布 ?
rgeom(n, prob)几何分布
rhyper(nn, m, n, k) ?超几何分布
rlogis(n, location=0, scale=1) logistic分布
rlnorm(n, meanlog=0, sdlog=1)对数正态
rnbinom(n, size, prob)负二项分布
runif(n, min=0, max=1)均匀分布
rwilcox(nn, m, n), rsignrank(nn, n) Wilcoxon分布
注意了,上面的分布都有一个规律,就是所有的函数前面都有r开始,所以呢,如果想获得概率密度,就用替换

如果想获取累计概率密度,就用替换

如果想获取分位数,就用替换

 

 

二项分布:

即重复n次独立的伯努利试验。在每次试验中只有两种可能的结果,两种结果发生与否互相对立,并且相互独立,与其它各次试验结果无关,事件发生与否的概率在每一次独立试验中都保持不变,则这一系列试验总称为n重伯努利实验,当试验次数为1时,二项分布服从0-1分布。

公式:P(ξ=K)= C(n,k) * p^k * (1-p)^(n-k)

其中,P是成功的概率,n是n次独立重复实验,k是n次实验k次发生的概率

期望:Eξ=np

方差:Dξ=np(1-p)

二项分布在R中展现:

p=.4

K=200 

n=10000 

x=rbinom(n,k,p)

hist(x)

技术分享
进行标准化处理:

mean=k*p

var=k*p*(1-p)

z=(x-mean)/sqrt(var)

hist(z)

技术分享

绘制密度图

mean=k*p

var=k*p*(1-p)

z=(x-mean)/sqrt(var)

hist(z)

技术分享
正态分布

正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线

随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)

当μ = 0,σ = 1时的正态分布是标准正态分布

正态分布在R中的展现:

x=rnorm(k, mean=mean,sd=sqrt(var))

hist(x)

技术分享
泊松分布:

是一种统计与概率学里常见到的离散概率分布,由法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)在1838年时发表。

泊松分布的概率函数:

技术分享

泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生率。 泊松分布适合于描述单位时间内随机事件发生的次数。

泊松分布在R中的展现:

par(mfrow=c(2,2),mar = c(3,4,1,1))

lambda=.5

x=rpois(k, lambda)

hist(x)

lambda=1

x=rpois(k, lambda)

hist(x)

lambda=5

x=rpois(k, lambda)

hist(x)

lambda=10

x=rpois(k, lambda)

hist(x)

技术分享
二项分布与泊松分布:

当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧10,p≦0.1时,就可以用泊松公式近似得计算。

 

par(mfrow=c(3,3),mar = c(3,4,1,1))

k=10000 

p=c(.5, .05, .005)

n=c(10,100,1000)

for (i in p){

  for (j in n){

    x=rbinom(k,j,i)

    hist(x)

  }}

技术分享
卡方分布:

若n个相互独立的随机变量ξ?、ξ?、……、ξn ,均服从标准正态分布(也称独立同分布于标准正态分布),则这n个服从标准正态分布的随机变量的平方和构成一新的随机变量,其分布规律称为卡方分布(chi-square distribution)。

卡方分布是由正态分布构造而成的一个新的分布,当自由度n很大时,

 技术分享 分布近似为正态分布。

卡方分布在R中的展示:

k=10000

par(mfrow=c(2,2),mar = c(3,4,1,1))

x=rchisq(k,2)

d=density(x)

plot(d)

x=rchisq(k,5)

d=density(x)

plot(d)

x=rchisq(k,100)

d=density(x)

plot(d)

x=rchisq(k,1000)

d=density(x)

plot(d)

技术分享
F分布:

F分布定义为:设X、Y为两个独立的随机变量,X服从自由度为k1的卡方分布,Y服从自由度为k2的卡方分布,这2 个独立的卡方分布被各自的自由度除以后的比率这一统计量的分布。即: F分布是服从第一自由度为k1,第二自由度为k2的分布。

k=10000

par(mfrow=c(2,2),mar = c(3,4,1,1))

x=rf(k,1, 100)

hist(x)

x=rf(k,1, 10000)

hist(x)

x=rf(k,10, 10000)

hist(x)

x=rf(k,10000, 10000)

hist(x)

技术分享
t分布:

t分布曲线形态与n(确切地说与自由度v)大小有关。与标准正态分布曲线相比,自由度v越小,t分布曲线愈平坦,曲线中间愈低,曲线双侧尾部翘得愈高;自由度v愈大,t分布曲线愈接近正态分布曲线,当自由度v=∞时,t分布曲线为标准正态分布曲线。

k=10000

par(mfrow=c(2,2),mar = c(3,4,1,1))

x=rt(k,2)

hist(x)

x=rt(k,5)

hist(x)

x=rt(k,10)

hist(x)

x=rt(k,100)

hist(x)

技术分享

几种分布关系图示:

技术分享

 

i2mean=function(x,n=10){

  k=length(x)

  nobs=k/n

  xm=matrix(x,nobs,n)

  y=rowMeans(xm)

  return (y)

}

 

par(mfrow=c(5,1),mar = c(3,4,1,1))

#Binomia

p=.05

n=100 

k=10000

x=i2mean(rbinom(k, n,p))

d=density(x)

plot(d,main="Binomial")

#Poisson

lambda=10

x=i2mean(rpois(k, lambda))

d=density(x)

plot(d,main="Poisson")

#Chi-Square

x=i2mean(rchisq(k,5))

d=density(x)

plot(d,main="Chi-square")

#F

x=i2mean(rf(k,10, 10000))

d=density(x)

plot(d,main="F dist")

#t

x=i2mean(rt(k,5))

d=density(x)

plot(d,main="t dist")

技术分享

来源于:砍柴问樵夫 































以上是关于简单介绍一下R中的几种统计分布的主要内容,如果未能解决你的问题,请参考以下文章

spring Bean装配的几种方式简单介绍

简单介绍Java中常用的几种线程池

简单介绍Java中常用的几种线程池

效率提升

八十八页MooseFS超实用手册--目前开源的几种分布式文件系统及MooseFS介绍

简单介绍下关于STM8S的几种低功耗模式