python怎么对dataframe进行操作
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python怎么对dataframe进行操作相关的知识,希望对你有一定的参考价值。
参考技术A 用pandas中的DataFrame时选取行或列:import numpy as npimport pandas as pdfrom pandas import Sereis, DataFrameser = Series(np.arange(3.))data = DataFrame(np.arange(16).reshape(4,4),index=list('abcd'),columns=list('wxyz'))data['w'] #选择表格中的'w'列,使用类字典属性,返回的是Series类型data.w #选择表格中的'w'列,使用点属性,返回的是Series类型data[['w']] #选择表格中的'w'列,返回的是DataFrame类型data[['w','z']] #选择表格中的'w'、'z'列data[0:2] #返回第1行到第2行的所有行,前闭后开,包括前不包括后data[1:2] #返回第2行,从0计,返回的是单行,通过有前后值的索引形式,
#如果采用data[1]则报错data.ix[1:2] #返回第2行的第三种方法,返回的是DataFrame,跟data[1:2]同data['a':'b'] #利用index值进行切片,返回的是**前闭后闭**的DataFrame,
#即末端是包含的
data.irow(0) #取data的第一行data.icol(0) #取data的第一列data.head() #返回data的前几行数据,默认为前五行,需要前十行则data.head(10)data.tail() #返回data的后几行数据,默认为后五行,需要后十行则data.tail(10)ser.iget_value(0) #选取ser序列中的第一个ser.iget_value(-1) #选取ser序列中的最后一个,这种轴索引包含索引器的series不能采用ser[-1]去获取最后一个,这会引起歧义。data.iloc[-1] #选取DataFrame最后一行,返回的是Seriesdata.iloc[-1:] #选取DataFrame最后一行,返回的是DataFramedata.loc['a',['w','x']] #返回‘a’行'w'、'x'列,这种用于选取行索引列索引已知data.iat[1,1] #选取第二行第二列,用于已知行、列位置的选取。123456789101112131415161718192021222324252627282930313233343536373839404142
下面是简单的例子使用验证:
import pandas as pdfrom pandas import Series, DataFrame
import numpy as np
data = DataFrame(np.arange(15).reshape(3,5),index=['one','two','three'],columns=['a','b','c','d','e'])
data
Out[7]:
a b c d eone 0 1 2 3 4two 5 6 7 8 9three 10 11 12 13 14#对列的操作方法有如下几种data.icol(0) #选取第一列E:\Anaconda2\lib\site-packages\spyder\utils\ipython\start_kernel.py:1: FutureWarning: icol(i) is deprecated. Please use .iloc[:,i] # -*- coding: utf-8 -*-Out[35]:
one 0two 5three 10Name: a, dtype: int32
data['a']
Out[8]:
one 0two 5three 10Name: a, dtype: int32
data.aOut[9]:
one 0two 5three 10Name: a, dtype: int32
data[['a']]
Out[10]:
aone 0two 5three 10data.ix[:,[0,1,2]] #不知道列名只知道列的位置时Out[13]:
a b cone 0 1 2two 5 6 7three 10 11 12data.ix[1,[0]] #选择第2行第1列的值Out[14]:
a 5Name: two, dtype: int32
data.ix[[1,2],[0]] #选择第2,3行第1列的值Out[15]:
atwo 5three 10data.ix[1:3,[0,2]] #选择第2-4行第1、3列的值Out[17]:
a ctwo 5 7three 10 12data.ix[1:2,2:4] #选择第2-3行,3-5(不包括5)列的值Out[29]:
c dtwo 7 8data.ix[data.a>5,3]
Out[30]:
three 13Name: d, dtype: int32
data.ix[data.b>6,3:4] #选择'b'列中大于6所在的行中的第4列,有点拗口Out[31]:
dthree 13data.ix[data.a>5,2:4] #选择'a'列中大于5所在的行中的第3-5(不包括5)列Out[32]:
c dthree 12 13data.ix[data.a>5,[2,2,2]] #选择'a'列中大于5所在的行中的第2列并重复3次Out[33]:
c c cthree 12 12 12#还可以行数或列数跟行名列名混着用data.ix[1:3,['a','e']]
Out[24]:
a etwo 5 9three 10 14data.ix['one':'two',[2,1]]
Out[25]:
c bone 2 1two 7 6data.ix[['one','three'],[2,2]]
Out[26]:
c cone 2 2three 12 12data.ix['one':'three',['a','c']]
Out[27]:
a cone 0 2two 5 7three 10 12data.ix[['one','one'],['a','e','d','d','d']]
Out[28]:
a e d d done 0 4 3 3 3one 0 4 3 3 3#对行的操作有如下几种:data[1:2] #(不知道列索引时)选择第2行,不能用data[1],可以用data.ix[1]Out[18]:
a b c d etwo 5 6 7 8 9data.irow(1) #选取第二行Out[36]:
a 5b 6c 7d 8e 9Name: two, dtype: int32
data.ix[1] #选择第2行Out[20]:
a 5b 6c 7d 8e 9Name: two, dtype: int32
data['one':'two'] #当用已知的行索引时为前闭后闭区间,这点与切片稍有不同。Out[22]:
a b c d eone 0 1 2 3 4two 5 6 7 8 9data.ix[1:3] #选择第2到4行,不包括第4行,即前闭后开区间。Out[23]:
a b c d etwo 5 6 7 8 9three 10 11 12 13 14data.ix[-1:] #取DataFrame中最后一行,返回的是DataFrame类型,**注意**这种取法是有使用条件的,只有当行索引不是数字索引时才可以使用,否则可以选用`data[-1:]`--返回DataFrame类型或`data.irow(-1)`--返回Series类型Out[11]:
a b c d ethree 10 11 12 13 14data[-1:] #跟上面一样,取DataFrame中最后一行,返回的是DataFrame类型Out[12]:
a b c d ethree 10 11 12 13 14data.ix[-1] #取DataFrame中最后一行,返回的是Series类型,这个一样,行索引不能是数字时才可以使用Out[13]:
a 10b 11c 12d 13e 14Name: three, dtype: int32
data.tail(1) #返回DataFrame中的最后一行data.head(1) #返回DataFrame中的第一行123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186
最近处理数据时发现当pd.read_csv()数据时有时候会有读取到未命名的列,且该列也用不到,一般是索引列被换掉后导致的,有强迫症的看着难受,这时候dataframe.drop([columns,])是没法处理的,怎么办呢,
最笨的方法是直接给列索引重命名:
data6
Unnamed: 0 high symbol timedate 2016-11-01 0 3317.4 IF1611 18:10:44.82016-11-01 1 3317.4 IF1611 06:01:04.52016-11-01 2 3317.4 IF1611 07:46:25.52016-11-01 3 3318.4 IF1611 09:30:04.02016-11-01 4 3321.8 IF1611 09:31:04.0data6.columns = list('abcd')
data6 a b c ddate 2016-11-01 0 3317.4 IF1611 18:10:44.82016-11-01 1 3317.4 IF1611 06:01:04.52016-11-01 2 3317.4 IF1611 07:46:25.52016-11-01 3 3318.4 IF1611 09:30:04.02016-11-01 4 3321.8 IF1611 09:31:04.012345678910111213141516171819202122
重新命名后就可以用dataframe.drop([columns])来删除了,当然不用我这样全部给列名替换掉了,可以只是改变未命名的那个列,然后删除。不过这个用起来总是觉得有点low,有没有更好的方法呢,有,可以不去删除,直接:
data7 = data6.ix[:,1:]1
这样既不改变原有数据,也达到了删除神烦列,当然我这里时第0列删除,可以根据实际选择所在的列删除之,至于这个原理,可以看下前面的对列的操作。
使用python读取和保存为excelcsvtxt文件以及对DataFrame文件的基本操作
文章目录
一、对excel文件的处理
1.读取excel文件并将其内容转化DataFrame和矩阵形式
①将excel转化为dataframe格式
data_file = 'Pre_results.xlsx' # Excel文件存储位置
D = pd.read_excel('Pre_results.xlsx')
print(D)
②将excel转化为矩阵格式
首先要说明的一点是,同一个矩阵中所有元素必须是同一类型。
例如,生成矩阵时,我们可以为矩阵指定类型dtype=str、int、float等。
# 生成一个2×2的类型为str的矩阵
import numpy as np
datamatrix = np.zeros((2, 2),dtype = str)
print(datamatrix)
可见,在这个矩阵中的元素都是str类型。
代码实战:
首先看一下我们要处理的excel文件的内容。
下面直接上代码。
import numpy as np
import xlrd
def import_excel_matrix(path):
table = xlrd.open_workbook(path).sheets()[0] # 获取第一个sheet表
row = table.nrows # 行数
#print(row)
col = table.ncols # 列数
datamatrix = np.zeros((row, col),dtype = float) # 生成一个nrows行*ncols列的初始矩阵,在excel中,类型必须相同,否则需要自己指定dtype来强制转换。
for i in range(col): # 对列进行遍历 向矩阵中放入数据
#print(table.col_values(i)) #是矩阵
cols = np.matrix(table.col_values(i)) # 把list转换为矩阵进行矩阵操作
#print(cols)
#cols = float(cols)
datamatrix[:, i] = cols # 按列把数据存进矩阵中
return datamatrix
data_file = 'to_matrix.xlsx' # Excel文件存储位置
data_matrix = import_excel_matrix(data_file)
print(data_matrix)
运行结果:
2.将数据写入xlsx文件
# 1.导入openpyxl模块
import openpyxl
# 2.调用Workbook()方法
wb = openpyxl.Workbook()
# 3. 新建一个excel文件,并且在单元表为"sheet1"的表中写入数据
ws = wb.create_sheet("sheet1")
# 4.在单元格中写入数据
# ws.cell(row=m, column=n).value = *** 在第m行n列写入***数据
ws.cell(row=1, column=1).value = "时间"
ws.cell(row=1, column=2).value = "零食"
ws.cell(row=1, column=3).value = "是否好吃"
# 5.保存表格
wb.save('嘿嘿.xlsx')
print('保存成功!')
3.将数据保存为xlsx文件
import xlwt
workbook=xlwt.Workbook(encoding='utf-8')
booksheet=workbook.add_sheet('Sheet 1', cell_overwrite_ok=True)
DATA=(('学号','姓名','年龄','性别','成绩'),
('1001','A','11','男','12'),
('1002','B','12','女','22'),
('1003','C','13','女','32'),
('1004','D','14','男','52'),)
for i,row in enumerate(DATA):
for j,col in enumerate(row):
booksheet.write(i,j,col)
workbook.save('grade.xls')
4.使用excel对数据进行处理的缺点
只能一行一行的读出和写入,且矩阵形式只可以存放相同类型的数据,效率不高。
二、对csv文件的处理
1.读取csv文件并将其内容转化为DataFrame形式
import pandas as pd
df = pd.read_csv('to_df.csv') #,nrows =6) nrows=6表示只读取前六行数据
print(df)
2.将DataFrame保存为csv文件
df.to_csv('df_to_csv.csv')
3.优缺点
①CSV是纯文本文件,excel不是纯文本,excel包含很多格式信息在里面。
②CSV文件的体积会更小,创建分发读取更加方便,适合存放结构化信息,比如记录的导出,流量统计等等。
③CSV文件在windows平台默认的打开方式是excel,但是它的本质是一个文本文件。
④csv文件只有一个sheet,太多的表不易保存,注意命名规范。
三、对txt文件的处理
1.读取txt文件
f=open('data.txt')
print(f.read())
2.将数据写入txt文件
注意不能将DataFrame写入txt文件,只能写入字符串。
f = open('data.txt','w', encoding='utf-8') #打开文件,若文件不存在系统自动创建
#w只能写入操作 r只能读取 a向文件追加;w+可读可写 r+可读可写 a+可读可追加;wb+写入进制数据
#w模式打开文件,如果文件中有数据,再次写入内容,会把原来的覆盖掉
f.write('hello world! = %.3f' % data) #write写入
f.writelines(['hello!\\n']) #writelines 将列表中的字符串写入文件 但不会换行 参数必须是一个只存放字符串的列表
f.close() #关闭文件
3.将数据保存到txt文件
save_path= 'save.txt'
np.savetxt(save_path, data, fmt='%.6f')
四、对DataFrame文件的基本操作
1.DataFrame的创建
①DataFrame是一种表格型数据结构,(每一列的数据类型可以不同,而矩阵必须相同)它含有一组有序的列,每列可以是不同的值。
②DataFrame既有行索引,也有列索引,(调用其值时用)它可以看作是由Series组成的字典,不过这些Series公用一个索引。
③DataFrame的创建有多种方式,可以根据dict进行创建,也可以读取csv或者txt文件来创建。这里主要介绍这两种方式。
1.1根据字典创建
data =
'state':['Ohio','Ohio','Ohio','Nevada','Nevada'],
'year':[2000,2001,2002,2001,2002],
'pop':[1.5,1.7,3.6,2.4,2.9]
frame = pd.DataFrame(data)
frame
#输出
pop state year
0 1.5 Ohio 2000
1 1.7 Ohio 2001
2 3.6 Ohio 2002
3 2.4 Nevada 2001
4 2.9 Nevada 2002
DataFrame的行索引是index,列索引是columns,我们可以在创建DataFrame时指定索引的值:
frame2 = pd.DataFrame(data,index=['one','two','three','four','five'],columns=['year','state','pop','debt'])
frame2
#输出
year state pop debt
one 2000 Ohio 1.5 NaN
two 2001 Ohio 1.7 NaN
three 2002 Ohio 3.6 NaN
four 2001 Nevada 2.4 NaN
five 2002 Nevada 2.9 NaN
使用嵌套字典也可以创建DataFrame,此时外层字典的键作为列,内层键则作为索引:
pop = 'Nevada':2001:2.4,2002:2.9,'Ohio':2000:1.5,2001:1.7,2002:3.6
frame3 = pd.DataFrame(pop)
frame3
#输出
Nevada Ohio
2000 NaN 1.5
2001 2.4 1.7
2002 2.9 3.6
我们可以用index,columns,values来访问DataFrame的行索引,列索引以及数据值,数据值返回的是一个二维的ndarray
frame2.values
frame2.values[0,1]
1.2读取文件
读取文件生成DataFrame最常用的是read_csv,read_table方法。该方法中几个重要的参数如下所示:
其他创建DataFrame的方式有很多,比如我们可以通过读取mysql或者mongoDB来生成,也可以读取json文件等等,这里就不再介绍。
1.3 DataFrame文件拼接
df = df1.append([df2,df3], ignore_index = True)
2.DataFrame轴的概念
在DataFrame的处理中经常会遇到轴的概念,这里先给大家一个直观的印象,我们所说的axis=0即表示沿着每一列或行标签\\索引值向下执行方法,axis=1即表示沿着每一行或者列标签模向执行对应的方法。
3.DataFrame一些性质
3.1索引、切片
我们可以根据列名来选取一列,返回一个Series:
frame2['year'] #索引列名
索引多列
data = pd.DataFrame(np.arange(16).reshape((4,4)),index = ['Ohio','Colorado','Utah','New York'],columns=['one','two','three','four'])
data[['two','three']]
索引多行
data[:2] #第一行和第二行
#输出
one two three four
Ohio 0 1 2 3
Colorado 4 5 6 7
索引时,如果要是用标签,最好使用loc方法,如果使用下标,最好使用iloc方法。
data.loc['Colorado',['two','three']]
#输出
two 5
three 6
Name: Colorado, dtype: int64
data.iloc[0:3,2]
#输出
Ohio 2
Colorado 6
Utah 10
Name: three, dtype: int64
3.2修改数据
可以使用一个标量修改DataFrame中的某一列,此时这个标量会广播到DataFrame的每一行上。
data =
'state':['Ohio','Ohio','Ohio','Nevada','Nevada'],
'year':[2000,2001,2002,2001,2002],
'pop':[1.5,1.7,3.6,2.4,2.9]
frame2 = pd.DataFrame(data,index=['one','two','three','four','five'],columns=['year','state','pop','debt'])
frame2
frame2['debt']=16.5
也可以使用一个列表来修改,不过要保证列表的长度与DataFrame长度相同:
frame2.debt = np.arange(5)
可以使用一个Series,此时会根据索引进行精确匹配:
val = pd.Series([-1.2,-1.5,-1.7],index=['two','four','five'])
frame2['debt'] = val
3.3算数运算
DataFrame在进行算术运算时会进行补齐,在不重叠的部分补足NA
df1 = pd.DataFrame(np.arange(9).reshape((3,3)),columns=list('bcd'),index=['Ohio','Texas','Colorado'])
df2 = pd.DataFrame(np.arange(12).reshape((4,3)),columns = list('bde'),index=['Utah','Ohio','Texas','Oregon'])
df1 + df2
3.4函数应用和映射
numpy的元素级数组方法,也可以用于操作Pandas对象:
frame = pd.DataFrame(np.random.randn(3,3),columns=list('bcd'),index=['Ohio','Texas','Colorado'])
np.abs(frame)
另一个常见的操作是,将函数应用到由各列或行所形成的一维数组上。DataFrame的apply方法即可实现此功能。
f = lambda x:x.max() - x.min()
frame.apply(f)
3.5排序和排名
对于DataFrame,sort_index可以根据任意轴的索引进行排序,并指定升序降序
frame = pd.DataFrame(np.arange(8).reshape((2,4)),index=['three','one'],columns=['d','a','b','c'])
frame.sort_index()
DataFrame也可以按照值进行排序:
#按照任意一列或多列进行排序
frame.sort_values(by=['a','b'])
3.6汇总和计算描述统计
DataFrame中的实现了sum、mean、max等方法,我们可以指定进行汇总统计的轴,同时,也可以使用describe函数查看基本所有的统计项:
df = pd.DataFrame([[1.4,np.nan],[7.1,-4.5],[np.nan,np.nan],[0.75,-1.3]],index=['a','b','c','d'],columns=['one','two'])
df.sum(axis=1)
#输出
one 9.25
two -5.80
dtype: float64
#Na会被自动排除,可以使用skipna选项来禁用该功能
df.mean(axis=1,skipna=False)
#输出
a NaN
b 1.300
c NaN
d -0.275
dtype: float64
#idxmax返回间接统计,是达到最大值的索引
df.idxmax()
#输出
one b
two d
dtype: object
#describe返回的是DataFrame的汇总统计
#非数值型的与数值型的统计返回结果不同
df.describe()
DataFrame也实现了corr和cov方法来计算一个DataFrame的相关系数矩阵和协方差矩阵,同时DataFrame也可以与Series求解相关系数。
frame1 = pd.DataFrame(np.random.randn(3,3),index=list('abc'),columns=list('abc'))
frame1.corr
frame1.cov()
#corrwith用于计算每一列与Series的相关系数
frame1.corrwith(frame1['a'])
3.7处理缺失数据
Pandas中缺失值相关的方法主要有以下三个:
isnull方法用于判断数据是否为空数据;
fillna方法用于填补缺失数据;
dropna方法用于舍弃缺失数据。
上面两个方法返回一个新的Series或者DataFrame,对原数据没有影响,如果想在原数据上进行直接修改,使用inplace参数:
data = pd.DataFrame([[1,6.5,3],[1,np.nan,np.nan],[np.nan,np.nan,np.nan],[np.nan,6.5,3]])
data.dropna()
#输出
0 1 2
0 1.0 6.5 3.0
对DataFrame来说,dropna方法如果发现缺失值,就会进行整行删除,不过可以指定删除的方式,how=all,是当整行全是na的时候才进行删除,同时还可以指定删除的轴。
data.dropna(how='all',axis=1,inplace=True)
data
#输出
0 1 2
0 1.0 6.5 3.0
1 1.0 NaN NaN
2 NaN NaN NaN
3 NaN 6.5 3.0
DataFrame填充缺失值可以统一填充,也可以按列填充,或者指定一种填充方式:
data.fillna(1:2,2:3)
#输出
0 1 2
0 1.0 6.5 3.0
1 1.0 2.0 3.0
2 NaN 2.0 3.0
3 NaN 6.5 3.0
data.fillna(method='ffill')
#输出
0 1 2
0 1.0 6.5 3.0
1 1.0 6.5 3.0
2 1.0 6.5 3.0
3 1.0 6.5 3.0
3.8 其他
a = df.groupby(['device_category', 'media_category'])['exposure_last'].mean()
选择这两个特征 ‘device_category’, 'media_category’相同的行,根据’exposure_last’计算mean平均值(sum求和)。
Dataframe中的Series是什么?
1、series与array类型的不同之处为series有索引,而另一个没有;series中的数据必须是一维的,而array类型不一定
2、可以把series看成一个定长的有序字典,可以通过shape,index,values等得到series的属性
其他文件的操作
文件复制操作
import shutil
shutil.copyfile(dir1,dir2)
如果路径不存在创建路径
if not os.path.exists(datapath):
os.mkdir(datapath)
查看当前目录下内容
import os
all_files = os.listdir(os.getcwd())
print(all_files)
filenames = os.listdir(os.curdir) #获取当前目录中的内容
print(filenames)
以上是关于python怎么对dataframe进行操作的主要内容,如果未能解决你的问题,请参考以下文章
python pandas groupby分组后的数据怎么用