Spark Application的调度算法

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Spark Application的调度算法相关的知识,希望对你有一定的参考价值。

要想明白spark application调度机制,需要回答一下几个问题:

1.谁来调度?

2.为谁调度?

3.调度什么?

3.何时调度?

4.调度算法

前四个问题可以用如下一句话里来回答:每当集群资源发生变化时,active master 进程所有已注册的并且没有调度完毕的application调度Worker节点上的Executor进程。

   "active master" , spark集群可能有多个master,但是只有一个active master 参与调度,standby master不参与调度。

   集群资源发生变化是什么意思呢?这里的集群资源指的主要是cores的变化,注册/移除Executor进程使得集群的freeCores变多/变少,添加/移除Worker节点使得集群的freeCores变多/变少... ...,所有导致集群资源发生变化的操作,都会调用schedule()重新为application和driver进行资源调度。

 

spark提供了两种资源调度算法:spreadOut和非spreadOut。spreadOut算法会尽可能的将一个application 所需要的Executor进程分布在多个worker几点上,从而提高并行度,非spreadOut与之相反,他会把一个worker节点的freeCores都耗尽了才会去下一个worker节点分配。

 

为了详细说明这两种算法,我们先来以一个具体的例子来介绍,最后再介绍源码。

 

基本概念

  每一个application至少包含以下基本属性:

  coresPerExecutor:每一个Executor进程的core个数

  memoryPerExecutor:每一个Executor进程的memory大小

  maxCores: 这个application最多需要的core个数。

 

  每一个worker至少包含以下基本属性:

  freeCores:worker 节点当前可用的core个数

  memoryFree:worker节点当前可用的memory大小。

 

假设一个待注册的application如下:

  coresPerExecutor:2

  memoryPerExecutor:512M

  maxCores: 12

这表示这个application 最多需要12个core,每一个Executor进行都要2个core,512M内存。

 

假设某一时刻spark集群有如下几个worker节点,他们按照coresFree降序排列:

Worker1:coresFree=10  memoryFree=10G

Worker2:coresFree=7   memoryFree=1G

Worker3:coresFree=3   memoryFree=2G

Worker4:coresFree=2   memoryFree=215M

Worker5:coresFree=1   memoryFree=1G

 

其中worker5不满足application的要求:worker5.coresFree < application.coresPerExecutor

worker4也不满足application的要求:worker4.memoryFree < application.memoryPerExecutor

 

因此最终满足调度要求的worker节点只有前三个,我们将这三个节点记作usableWorkers。

 

spreadOut算法

 先介绍spreadOut算法吧。上面已经说了,满足条件的worker只有前三个:

Worker1:coresFree=10  memoryFree=10G

Worker2:coresFree=7   memoryFree=1G

Worker3:coresFree=3   memoryFree=2G

 

第一次调度之后,worker列表如下:

Worker1:coresFree=8  memoryFree=9.5G  assignedExecutors=1  assignedCores=2

Worker2:coresFree=7   memoryFree=1G    assignedExecutors=0  assignedCores=0

Worker3:coresFree=3   memoryFree=2G    assignedExecutors=0  assignedCores=0

totalExecutors:1,totalCores=2

 

可以发现,worker1的coresFree和memoryFree都变小了而worker2,worker3并没有发生改变,这是因为我们在worker1上面分配了一个Executor进程(这个Executor进程占用两个2core,512M memory)而没有在workre2和worker3上分配。

 

接下来,开始去worker2上分配:

Worker1:coresFree=8  memoryFree=9.5G      assignedExecutors=1  assignedCores=2

Worker2:coresFree=5   memoryFree=512M    assignedExecutors=1  assignedCores=2

Worker3:coresFree=3   memoryFree=2G        assignedExecutors=0  assignedCores=0

totalExecutors:2,totalCores=4

此时已经分配了2个Executor进程,4个core。

 

接下来去worker3上分配:

Worker1:coresFree=8  memoryFree=9.5G      assignedExecutors=1  assignedCores=2

Worker2:coresFree=5   memoryFree=512M    assignedExecutors=1  assignedCores=2

Worker3:coresFree=1   memoryFree=1.5G     assignedExecutors=1  assignedCores=2

totalExecutors:3,totalCores=6

 

接下来再去worker1分配,然后worker2...  ...以round-robin方式分配,由于worker3.coresFree<application.coresPerExecutor,不会在他上面分配资源了:

Worker1:coresFree=6  memoryFree=9.0G      assignedExecutors=2  assignedCores=4

Worker2:coresFree=5   memoryFree=512M    assignedExecutors=1  assignedCores=2

Worker3:coresFree=1   memoryFree=1.5G     assignedExecutors=1  assignedCores=2

totalExecutors:4,totalCores=8

 

Worker1:coresFree=6  memoryFree=9.0G      assignedExecutors=2  assignedCores=4

Worker2:coresFree=3   memoryFree=0M       assignedExecutors=2  assignedCores=4

Worker3:coresFree=1   memoryFree=1.5G     assignedExecutors=1  assignedCores=2

totalExecutors:5,totalCores=10

此时worker2也不满足要求了:worker2.memoryFree<application.memoryPerExecutor

因此,下一次分配就去worker1上了:

 

Worker1:coresFree=4  memoryFree=8.5G      assignedExecutors=3  assignedCores=6

Worker2:coresFree=3   memoryFree=0M        assignedExecutors=2  assignedCores=4

Worker3:coresFree=1   memoryFree=1.5G     assignedExecutors=1  assignedCores=2

totalExecutors:6,totalCores=12

 

ok,由于已经分配了12个core,达到了application的要求,所以不在为这个application调度了。

 

非spreadOUt算法

那么非spraadOut算法呢?他是逮到一个worker如果不把他的资源耗尽了是不会放手的:

Worker1:coresFree=8  memoryFree=9.5G  assignedExecutors=1  assignedCores=2

Worker2:coresFree=7   memoryFree=1G    assignedExecutors=0  assignedCores=0

Worker3:coresFree=3   memoryFree=2G    assignedExecutors=0  assignedCores=0

totalExecutors:1,totalCores=2

 

Worker1:coresFree=6  memoryFree=9.0G  assignedExecutors=2  assignedCores=4

Worker2:coresFree=7   memoryFree=1G    assignedExecutors=0  assignedCores=0

Worker3:coresFree=3   memoryFree=2G    assignedExecutors=0  assignedCores=0

totalExecutors:2,totalCores=4

 

Worker1:coresFree=4  memoryFree=8.5    assignedExecutors=3  assignedCores=6

Worker2:coresFree=7   memoryFree=1G    assignedExecutors=0  assignedCores=0

Worker3:coresFree=3   memoryFree=2G    assignedExecutors=0  assignedCores=0

totalExecutors:3,totalCores=6

 

Worker1:coresFree=2  memoryFree=8.0G  assignedExecutors=4  assignedCores=8

Worker2:coresFree=7   memoryFree=1G    assignedExecutors=0  assignedCores=0

Worker3:coresFree=3   memoryFree=2G    assignedExecutors=0  assignedCores=0

totalExecutors:4,totalCores=8

 

Worker1:coresFree=0  memoryFree=7.5G  assignedExecutors=5  assignedCores=10

Worker2:coresFree=7   memoryFree=1G    assignedExecutors=0  assignedCores=0

Worker3:coresFree=3   memoryFree=2G    assignedExecutors=0  assignedCores=0

totalExecutors:5,totalCores=10

 

 可以发现,worker1的coresfree已经耗尽了,好可怜。由于application需要12个core,而这里才分配了10个,所以还要继续往下分配:

Worker1:coresFree=0  memoryFree=7.5G      assignedExecutors=5  assignedCores=10

Worker2:coresFree=5   memoryFree=512G    assignedExecutors=1  assignedCores=2

Worker3:coresFree=3   memoryFree=2G        assignedExecutors=0  assignedCores=0

totalExecutors:6,totalCores=12

 

ok,最终分配来12个core,满足了application的要求。

 

对比:

spreadOut算法中,是以round-robin方式,轮询的在worker节点上分配Executor进程,即以如下序列分配:worker1,worker2... ... worker n,worker1... ....

非spreadOut算法中,逮者一个worker就不放手,直到满足一下条件之一:

  worker.freeCores<application.coresPerExecutor 或者  worker.memoryFree<application.memoryPerExecutor 。

在上面两个例子中,虽然最终都分配了6个Executor进程和12个core,但是spreadOut方式下,6个Executor进程分散在不同的worker节点上,充分利用了spark集群的worker节点,而非spreadOut方式下,只在worker1和worker2上分配了Executor进程,并没有充分利用spark worker节点。

 

小插曲,spreadOut + oneExecutorPerWorker 算法

spark还有一个叫做”oneExecutorPerWorker“机制,即一个worker上启动一个Executor进程,下面只是简单的说一下得了:

Worker1:coresFree=8  memoryFree=9.5G  assignedExecutors=1  assignedCores=2

Worker2:coresFree=7   memoryFree=1G    assignedExecutors=0  assignedCores=0

Worker3:coresFree=3   memoryFree=2G    assignedExecutors=0  assignedCores=0

totalExecutors:1,totalCores=2

 

Worker1:coresFree=8  memoryFree=9.5G      assignedExecutors=1  assignedCores=2

Worker2:coresFree=5   memoryFree=512M    assignedExecutors=1  assignedCores=2

Worker3:coresFree=3   memoryFree=2G        assignedExecutors=0  assignedCores=0

totalExecutors:2,totalCores=4

 

 

Worker1:coresFree=8  memoryFree=9.5G      assignedExecutors=1  assignedCores=2

Worker2:coresFree=5   memoryFree=512M    assignedExecutors=1  assignedCores=2

Worker3:coresFree=1   memoryFree=1.5G     assignedExecutors=1  assignedCores=2

totalExecutors:3,totalCores=6

 

Worker1:coresFree=6  memoryFree=9.0G      assignedExecutors=1  assignedCores=4

Worker2:coresFree=3   memoryFree=512M     assignedExecutors=1  assignedCores=2

Worker3:coresFree=1   memoryFree=1.5G     assignedExecutors=1  assignedCores=2

totalExecutors:3,totalCores=8

 

Worker1:coresFree=6  memoryFree=9.0G      assignedExecutors=1  assignedCores=4

Worker2:coresFree=2   memoryFree=0   M     assignedExecutors=1  assignedCores=4

Worker3:coresFree=1   memoryFree=1.5G     assignedExecutors=1  assignedCores=2

totalExecutors:3,totalCores=10

 

Worker1:coresFree=4  memoryFree=9.5G      assignedExecutors=1  assignedCores=6

Worker2:coresFree=2   memoryFree=0   M     assignedExecutors=1  assignedCores=4

Worker3:coresFree=1   memoryFree=1.5G     assignedExecutors=1  assignedCores=2

totalExecutors:3,totalCores=12

 

和spreadOut+非oneExecutorPerWorker对比发现,唯一的不同就是Executor进程的数量,一个是6,一个是3。

(

   这里在额外扩展一下,假设application的maxCores=14,而不是12,那么接着上面那个worker列表来:

    Worker1:coresFree=4  memoryFree=9.5G      assignedExecutors=1  assignedCores=6

    Worker2:coresFree=0   memoryFree=0   M     assignedExecutors=1  assignedCores=6

    Worker3:coresFree=1   memoryFree=1.5G     assignedExecutors=1  assignedCores=2

    totalExecutors:3,totalCores=12

    

   虽然worker2.memoryFree=0,但是仍然可以继续在他上面分配core,因为onExecutorPerWorker机制不检查内存的限制。

)

 

 

 接下来看看源码是怎么实现的:

了解了上面写的,在阅读源码就很轻易了,这里简单说一下。

org.apache.spark.deploy.master.Master收到application发送的RegisterApplication(description, driver)消息后,开始执行注册逻辑:

    case RegisterApplication(description, driver) => {
      // TODO Prevent repeated registrations from some driver
//standby master不调度
if (state == RecoveryState.STANDBY) { // ignore, don‘t send response } else { logInfo("Registering app " + description.name) val app = createApplication(description, driver)
//注册app,即将其加入到waitingApps中 registerApplication(app) logInfo(
"Registered app " + description.name + " with ID " + app.id)
//将app加入持久化引擎,主要是为了故障恢复 persistenceEngine.addApplication(app)
//向driver发送RegisteredApplication消息表明master已经注册了这个app driver.send(RegisteredApplication(app.id, self))
//为waitingApps中的app调度资源 schedule() } }

 

上面的注释已经写的很清楚了... ...

 

  /**
   * Schedule the currently available resources among waiting apps. This method will be called
   * every time a new app joins or resource availability changes.
   */
  private def schedule(): Unit = {
    if (state != RecoveryState.ALIVE) { return }
    // Drivers take strict precedence over executors
//为了避免每次schedule,总是在相同的worker上分配资源,所有这里打乱worker顺序。
val shuffledWorkers = Random.shuffle(workers) // Randomization helps balance drivers
//下面这个for循环是为driver调度资源,因为这里只将application的调度,所以driver的调度不说了。
for (worker <- shuffledWorkers if worker.state == WorkerState.ALIVE) { for (driver <- waitingDrivers) { if (worker.memoryFree >= driver.desc.mem && worker.coresFree >= driver.desc.cores) { launchDriver(worker, driver) waitingDrivers -= driver } } }

//为application调度资源 startExecutorsOnWorkers() }

 

 

  /**
   * Schedule and launch executors on workers
   */
  private def startExecutorsOnWorkers(): Unit = {
    // Right now this is a very simple FIFO scheduler. We keep trying to fit in the first app
    // in the queue, then the second app, etc.
// 为waitingApps中的app调度资源,app.coresLeft是app还有多少core没有分配
for (app <- waitingApps if app.coresLeft > 0) { val coresPerExecutor: Option[Int] = app.desc.coresPerExecutor // Filter out workers that don‘t have enough resources to launch an executor
// 筛选出状态为ALIVE并且这个worker剩余内存,剩余core都大于等于app的要求,然后按照coresFree降序排列
val usableWorkers = workers.toArray.filter(_.state == WorkerState.ALIVE) .filter(worker => worker.memoryFree >= app.desc.memoryPerExecutorMB && worker.coresFree >= coresPerExecutor.getOrElse(1)) .sortBy(_.coresFree).reverse
//在usableWorkers上为app分配Executor val assignedCores
= scheduleExecutorsOnWorkers(app, usableWorkers, spreadOutApps) // Now that we‘ve decided how many cores to allocate on each worker, let‘s allocate them
// 在worker上启动Executor进程
for (pos <- 0 until usableWorkers.length if assignedCores(pos) > 0) { allocateWorkerResourceToExecutors( app, assignedCores(pos), coresPerExecutor, usableWorkers(pos)) } } }

 

  这个方法做了如下事情:

 1.筛选出可用的worker,即usableWorkers,如果一个worker满足以下所有条件,那么这个worker就被添加到usableWorkers中:

   Alive

   worker.memoryFree >= app.desc.memoryPerExecutorMB

   worker.coresFree >= coresPerExecutor

  2.assignedCores是一个数组,assignedCores[i]里面存储了需要在usableWorkers[i]上分配的core个数,譬如如果assingedCores[1]=2,那么就需要在usableWorkers[1]上分配2个core。

 

  /**
   * Schedule executors to be launched on the workers.
   * Returns an array containing number of cores assigned to each worker.
   *
   * There are two modes of launching executors. The first attempts to spread out an application‘s
   * executors on as many workers as possible, while the second does the opposite (i.e. launch them
   * on as few workers as possible). The former is usually better for data locality purposes and is
   * the default.
   *
   * The number of cores assigned to each executor is configurable. When this is explicitly set,
   * multiple executors from the same application may be launched on the same worker if the worker
   * has enough cores and memory. Otherwise, each executor grabs all the cores available on the
   * worker by default, in which case only one executor may be launched on each worker.
   *
   * It is important to allocate coresPerExecutor on each worker at a time (instead of 1 core
   * at a time). Consider the following example: cluster has 4 workers with 16 cores each.
   * User requests 3 executors (spark.cores.max = 48, spark.executor.cores = 16). If 1 core is
   * allocated at a time, 12 cores from each worker would be assigned to each executor.
   * Since 12 < 16, no executors would launch [SPARK-8881].
   */
  private def scheduleExecutorsOnWorkers(
      app: ApplicationInfo,
      usableWorkers: Array[WorkerInfo],
      spreadOutApps: Boolean): Array[Int] = {
    val coresPerExecutor = app.desc.coresPerExecutor
    val minCoresPerExecutor = coresPerExecutor.getOrElse(1)
    val oneExecutorPerWorker = coresPerExecutor.isEmpty
    val memoryPerExecutor = app.desc.memoryPerExecutorMB
    val numUsable = usableWorkers.length
    val assignedCores = new Array[Int](numUsable) // Number of cores to give to each worker
    val assignedExecutors = new Array[Int](numUsable) // Number of new executors on each worker
    var coresToAssign = math.min(app.coresLeft, usableWorkers.map(_.coresFree).sum)

    /** Return whether the specified worker can launch an executor for this app. */
//是否可以在一个worker上分配Executor def canLaunchExecutor(pos: Int): Boolean = { val keepScheduling = coresToAssign >= minCoresPerExecutor val enoughCores = usableWorkers(pos).coresFree - assignedCores(pos) >= minCoresPerExecutor // If we allow multiple executors per worker, then we can always launch new executors. // Otherwise, if there is already an executor on this worker, just give it more cores. val launchingNewExecutor = !oneExecutorPerWorker || assignedExecutors(pos) == 0 if (launchingNewExecutor) {
//在不里,需要检查worker的空闲core和内存是否够用 val assignedMemory
= assignedExecutors(pos) * memoryPerExecutor val enoughMemory = usableWorkers(pos).memoryFree - assignedMemory >= memoryPerExecutor val underLimit = assignedExecutors.sum + app.executors.size < app.executorLimit keepScheduling && enoughCores && enoughMemory && underLimit } else { // We‘re adding cores to an existing executor, so no need // to check memory and executor limits
//尤其需要注意的是,oneExecutorPerWorker机制下,不检测内存限制,很重要。 keepScheduling && enoughCores } } // Keep launching executors until no more workers can accommodate any // more executors, or if we have reached this application‘s limits var freeWorkers = (0 until numUsable).filter(canLaunchExecutor) while (freeWorkers.nonEmpty) { freeWorkers.foreach { pos => var keepScheduling = true while (keepScheduling && canLaunchExecutor(pos)) {
//要分配的cores coresToAssign
-= minCoresPerExecutor
//已分配的cores assignedCores(pos)
+= minCoresPerExecutor // If we are launching one executor per worker, then every iteration assigns 1 core // to the executor. Otherwise, every iteration assigns cores to a new executor.
//一个worker只启动一个Executor if (oneExecutorPerWorker) { assignedExecutors(pos) = 1 } else { assignedExecutors(pos) += 1 } // Spreading out an application means spreading out its executors across as // many workers as possible. If we are not spreading out, then we should keep // scheduling executors on this worker until we use all of its resources. // Otherwise, just move on to the next worker.
//如果没有开启spreadOUt算法,就一直在一个worker上分配,直到不能再分配为止。
if (spreadOutApps) { keepScheduling = false } } } freeWorkers = freeWorkers.filter(canLaunchExecutor) } assignedCores }

 

 

 

 

  /**
   * Allocate a worker‘s resources to one or more executors.
   * @param app the info of the application which the executors belong to
   * @param assignedCores number of cores on this worker for this application
   * @param coresPerExecutor number of cores per executor
   * @param worker the worker info
   */
  private def allocateWorkerResourceToExecutors(
      app: ApplicationInfo,
      assignedCores: Int,
      coresPerExecutor: Option[Int],
      worker: WorkerInfo): Unit = {
    // If the number of cores per executor is specified, we divide the cores assigned
    // to this worker evenly among the executors with no remainder.
    // Otherwise, we launch a single executor that grabs all the assignedCores on this worker.
//计算要创建多少个Executor进程,默认值是1.

val numExecutors = coresPerExecutor.map { assignedCores / _ }.getOrElse(1)
    val coresToAssign = coresPerExecutor.getOrElse(assignedCores)
    for (i <- 1 to numExecutors) {
      val exec = app.addExecutor(worker, coresToAssign)
//真正的启动Executor进程了。 launchExecutor(worker, exec) app.state
= ApplicationState.RUNNING } }

 

由于本人接触spark时间不长,如有错误或者任何意见可以在留言或者发送邮件到[email protected],让我们一起交流。

 

作者:FrancisWang 

邮箱:[email protected]
出处:http://www.cnblogs.com/francisYoung/
本文地址:http://www.cnblogs.com/francisYoung/
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。

以上是关于Spark Application的调度算法的主要内容,如果未能解决你的问题,请参考以下文章

Spark系列Master中的资源调度

Spark资源调度机制源码分析--基于spreadOutApps及非spreadOutApps两种资源调度算法

Spark 资源调度 与 任务调度

Spark资源调度和任务调度

[Spark][Python][Application]非交互式运行Spark Application 的例子

大数据:Spark CoreDriver上的Task的生成分配调度