canny算法的实现

Posted Lammy

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了canny算法的实现相关的知识,希望对你有一定的参考价值。

Canny边缘检测首先要对图像进行高斯去噪,前面讲到了高斯去噪处理,这里从对图像灰度进行微分运算讲起吧。微分运算常用的方法是利用模板算子,把模板中心对应到图像的每一个像素位置,然后按照模板对应的公式对中心像素和它周围的像素进行数学运算,算出图像对应像素点的值实验中模板矩阵选取了Laplacian算子[44]、Soble算子、Roberts算子。拉普拉兹算子是2阶微分算子,它的精度还算比较高,但对噪声过于敏感,有噪声的情况下效果很差。罗伯特算子在光照不均匀时候效果也很差,针对噪声影响也较为敏感。下面以较为简单的模板作为样例做出讲解:

1、计算x和y方向的梯度值从而得到灰度的梯度幅值和梯度方向

 Gx=(hd[x][y+1]-hd[x][y]+hd[x+1][y+1]-hd[x+1][y])/2;
 Gy=(hd[x][y]-hd[x+1][y]+hd[x][y+1]-hd[x+1][y+1])/2;

G[x][y]=(int)Math.sqrt(Gy*Gy+Gx*Gx);
angle[x][y]=Math.atan2(Gy,Gx);

2、高低阈值的选取。通常canny算子的高阈值Th和低阈值Tl的0.4,Tl=0.4*Th,而高阈值根据二值化的目的选择不同的值,先验知识通常Th选择方式:梯度幅值矩阵统计在梯度值,将所有梯度累加求和,取在q%(q%在0.75-0.85之间)的那个振幅值作为高阈值。

3、非极大值抑制,这是边缘检测的关键,是将区域内的梯度振幅值的极值当作边缘点,如下图:

对整个梯度振幅图扫描,如图若(x,y)的点大于dTmp1点和dTmp2的振幅则将(x,y)视为预选边缘点,将起值置为255。由图可以看出dTmp1点振幅值可以G(g1) + (1-cot(sigma)) *(G(g2)-G(g1))同理可以得到dTmp2点的梯度振幅值。G这样得到一个预选边缘点矩阵:

  int [][] mayEdgeMatrix = getMaxmaiLimitMatrix(Gxy,angle);

4、扫描mayEdgeMatrix里所有预选边缘点,将梯度振幅大于等于Th的则视为边缘点置为255;将低于Tl的直接置为0,视为非边缘点;介于Tl、Th之间的的置为125,视为待检测点。这样得到了一个初步的边缘图点。

5、边缘连接,对上一部得到的图像进行扫描,将255周围的8领域点进行检测,若有为125的视为边缘点,置为255,再以这些新置为255的点8领域查找待检测点,若有就将其置为255,直到没有新的边缘点产生为止。

下面给出实现的类,在下面会给出调用的方法和相应的activity

package com.example.lammy.imagetest;

import android.graphics.Bitmap;
import java.util.LinkedList;
/**
 * Created by Lammy on 2016/11/12.
 */
public class MyCanny {
    private int Th;
    private int Tl;
    private float ratioOfTh;
    private Bitmap bitmap;
    private int h, w;
    private int[][] Gxy;
    private double[][] angle;

    private static int mayEdgePointGrayValue = 125;
    public MyCanny(Bitmap bitmap, float ratioOfTh) {
        this.bitmap = bitmap;
        this.ratioOfTh = ratioOfTh;
        init();
    }

    private void init() {
        h = bitmap.getHeight();
        w = bitmap.getWidth();
        Gxy = new int[h][w];
        angle = new double[h][w];
    }

    //得到高斯模板矩阵
    public float[][] get2DKernalData(int n, float sigma) {
        int size = 2 * n + 1;
        float sigma22 = 2 * sigma * sigma;
        float sigma22PI = (float) Math.PI * sigma22;
        float[][] kernalData = new float[size][size];
        int row = 0;
        for (int i = -n; i <= n; i++) {
            int column = 0;
            for (int j = -n; j <= n; j++) {
                float xDistance = i * i;
                float yDistance = j * j;
                kernalData[row][column] = (float) Math
                        .exp(-(xDistance + yDistance) / sigma22) / sigma22PI;
                column++;
            }
            row++;
        }

        return kernalData;
    }
    //获得图的灰度矩阵
    public int[][] getGrayMatrix(Bitmap bitmap) {
        int h = bitmap.getHeight();
        int w = bitmap.getWidth();
        int grayMatrix[][] = new int[h][w];
        for (int i = 0; i < h; i++)
            for (int j = 0; j < w; j++) {
                int argb = bitmap.getPixel(j, i);
                int r = (argb >> 16) & 0xFF;
                int g = (argb >> 8) & 0xFF;
                int b = (argb >> 0) & 0xFF;
                int grayPixel = (int) (r + g + b) / 3;
                grayMatrix[i][j] = grayPixel;
            }
        return grayMatrix;
    }

    //获得高斯模糊后的灰度矩阵
    public int[][] GS(int[][] hd, int size, float sigma) {
        float[][] gs = get2DKernalData(size, sigma);
        int outmax = 0;
        int inmax = 0;
        for (int x = size; x < w - size; x++)
            for (int y = size; y < h - size; y++) {
                float hc1 = 0;
                if (hd[y][x] > inmax)
                    inmax = hd[y][x];
                for (int k = -size; k < size + 1; k++)
                    for (int j = -size; j < size + 1; j++) {
                        hc1 = gs[size + k][j + size] * hd[y + j][x + k] + hc1;

                    }
                hd[y][x] = (int) (hc1);
                if (outmax < hc1)
                    outmax = (int) (hc1);
            }
        float rate = inmax / outmax;

        for (int x = size; x < w - size; x++)
            for (int y = size; y < h - size; y++) {
                hd[y][x] = (int) (hd[y][x] * rate);
            }
        return hd;
    }
    //获得Gxy 和angle即梯度振幅和梯度方向
    public void getGxyAndAngle(int[][] Gs) {

        for (int x = 1; x < h - 1; x++)
            for (int y = 1; y < w - 1; y++) {
                int Gx = (Gs[x][y + 1] - Gs[x][y] + Gs[x + 1][y + 1] - Gs[x + 1][y]) / 2;//hd[x][y+1]-hd[x][y];//
                int Gy = (Gs[x][y] - Gs[x + 1][y] + Gs[x][y + 1] - Gs[x + 1][y + 1]) / 2;//hd[x+1][y]-hd[x][y];//

                //另外一种算子
//                int Gx = (Gs[x - 1][y + 1] + 2 * Gs[x][y + 1]
//                        + Gs[x + 1][y + 1] - Gs[x - 1][y - 1] - 2
//                        * Gs[x][y - 1] - Gs[x + 1][y - 1]) / 4;
//                int Gy=(Gs[x-1][y-1]+2*Gs[x-1][y]+Gs[x-1][y+1]-Gs[x+1][y-1]-2*Gs[x+1][y]-Gs[x+1][y+1])/4;

                //G[x][y]=Math.sqrt(Math.pow(Gx, 2)+Math.pow(Gy, 2));
                Gxy[x][y] = (int) Math.sqrt(Gy * Gy + Gx * Gx);
                angle[x][y] = Math.atan2(Gy, Gx);
                //将梯度方向值转向(0,2*PI)
                if (angle[x][y] < 0) {
                    angle[x][y] = angle[x][y] + 2 * Math.PI;
                }
            }
    }

    //非极大值抑制,将极值点存到edge边缘矩阵中,极值点是可能为边缘的点
    public int[][] getMaxmaiLimitMatrix(int[][]Gxy,double[][]angle) {
        int[][] edge =new int[h][w];
        for (int x = 0; x < h - 1; x++)
            for (int y = 0; y < w - 1; y++) {
                double angle1 = angle[x][y] / (Math.PI);
                if ((angle1 > 0 && angle1 <= 0.25) | (angle1 > 1 && angle1 <= 1.25)) {

                    double dTmp1 = Gxy[x][y + 1] + Math.abs(Math.tan(angle[x][y]) * (Gxy[x - 1][y + 1] - Gxy[x][y + 1]));
                    double dTmp2 = Gxy[x][y - 1] + Math.abs(Math.tan(angle[x][y]) * (Gxy[x + 1][y - 1] - Gxy[x][y - 1]));

                    double dTmp = Gxy[x][y];
                    if (dTmp > dTmp1 && dTmp > dTmp2)
                        edge[x][y] = 255;
                }

                if ((angle1 <= 2 && angle1 > 1.75) | (angle1 <= 1 && angle1 > 0.75)) {

                    double dTmp1 = Gxy[x][y + 1] + Math.abs(Math.tan(angle[x][y])) * (Gxy[x + 1][y + 1] - Gxy[x][y + 1]);
                    double dTmp2 = Gxy[x][y - 1] + Math.abs(Math.tan(angle[x][y])) * (Gxy[x - 1][y - 1] - Gxy[x][y - 1]);

                    double dTmp = Gxy[x][y];
                    if (dTmp > dTmp1 && dTmp > dTmp2)
                        edge[x][y] = 255;
                }

                if ((angle1 > 1 / 4 && angle1 <= 0.5) | (angle1 > 5 / 4 && angle1 <= 1.5)) {

                    double dTmp1 = Gxy[x - 1][y] + Math.abs(1 / Math.tan(angle[x][y])) * (Gxy[x - 1][y + 1] - Gxy[x - 1][y]);
                    double dTmp2 = Gxy[x + 1][y] + Math.abs(1 / Math.tan(angle[x][y])) * (Gxy[x + 1][y - 1] - Gxy[x + 1][y]);

                    double dTmp = Gxy[x][y];
                    if (dTmp > dTmp1 && dTmp > dTmp2)
                        edge[x][y] = 255;
                }

                if ((angle1 > 1.5 && angle1 <= 1.75) | (angle1 > 0.5 && angle1 <= 0.75)) {

                    double dTmp1 = Gxy[x - 1][y] + Math.abs(1 / Math.tan(angle[x][y])) * (Gxy[x - 1][y - 1] - Gxy[x - 1][y]);
                    double dTmp2 = Gxy[x + 1][y] + Math.abs(1 / Math.tan(angle[x][y])) * (Gxy[x + 1][y + 1] - Gxy[x + 1][y]);

                    double dTmp = Gxy[x][y];
                    if (dTmp > dTmp1 && dTmp > dTmp2)
                        edge[x][y] = 255;

                }
            }
        return  edge;
    }

    public void ThTlLimitPoints(int [][] maxmaiLimitMatrix,int Th , int Tl)
    {
        //上面得到的为255的才可能是边缘点,下面根据高低阈值再次去掉小于Tl点,高于Th的仍然为255,定为边缘点,125的为预选点
        for(int x=1;x<h-1;x++)
            for(int y=1;y<w-1;y++)
            {
                if(maxmaiLimitMatrix[x][y]==255)
                {
                    if(Gxy[x][y]<Tl)
                        maxmaiLimitMatrix[x][y]=0;

                    if(Gxy[x][y]>Tl&&Gxy[x][y]<Th)
                        maxmaiLimitMatrix[x][y]=mayEdgePointGrayValue;
                }

            }
    }
    //获得高阈值
    private int getTh(int [][] Gxy)
    {
        //梯度振幅统计,因为通过计算振幅的最大值不超过500,因此用500的矩阵统计
        int []amplitudeStatistics=new int[500];
        for(int x=1;x<h-1;x++)
            for(int y=1;y<w-1;y++){
                amplitudeStatistics[Gxy[x][y]]++;
            }
        int pointNumber=0;
        int max=0;
        for(int i=1;i<500;i++){
            if(amplitudeStatistics[i]>0)
            {
                max=i;
            }
            pointNumber=pointNumber+amplitudeStatistics[i];
        }

        int ThNumber=(int)(ratioOfTh*pointNumber);
        int     ThCount=0; int Th=0;
        for(int i=1;i<=max;i++)
        {
            if(ThCount<ThNumber)
                ThCount=ThCount+amplitudeStatistics[i];
            else
            {
                Th=i-1;
                break;
            }
        }
        return Th;
    }

    private int getTl(int Th)
    {
        return (int)(Th*0.4);
    }

    //canny算法的边缘连接
    public void traceEdge(double maybeEdgePointGrayValue, int edge[][]){
        int [][]liantongbiaoji = new int [h][w];
        for(int i = 0 ; i < h ; i++)
            for(int j = 0 ; j < w; j++) {
                if(edge[i][j]==255&&liantongbiaoji[i][j]==0) {
                    if ((edge[i][j] >= maybeEdgePointGrayValue) && liantongbiaoji[i][j] == 0) {
                        liantongbiaoji[i][j] = 1;
                        LinkedList<Point> qu = new LinkedList<Point>();
                        qu.add(new Point(i, j));
                        while (!qu.isEmpty()) {
                            Point cur = qu.removeFirst();

                            for (int a = -1; a <= 1; a++)
                                for (int b = -1; b <= 1; b++) {
                                    if (cur.x + a >= 0 && cur.x + a < h && cur.y + b >= 0
                                            && cur.y + b < w) {
                                        if (edge[cur.x + a][cur.y + b] >= maybeEdgePointGrayValue
                                                && liantongbiaoji[cur.x + a][cur.y + b] == 0) {
                                            qu.add(new Point(cur.x + a, cur.y + b));
                                            liantongbiaoji[cur.x + a][cur.y + b] = 1;
                                            edge[cur.x + a][cur.y + b] = 255;
                                        }
                                    }
                                }

                        }
                    }
                }
            }
    }

    //由灰度矩阵创建灰度图
    public Bitmap createGrayImage(int[][]grayMatrix)
    {
        int h=grayMatrix.length;
        int w = grayMatrix[0].length;
        Bitmap bt=Bitmap.createBitmap(w, h, Bitmap.Config.ARGB_8888);
        for(int i=0;i<h;i++)
            for(int j=0;j<w;j++)
            {
                int grayValue=grayMatrix[i][j];
                int color = ((0xFF << 24)+(grayValue << 16)+(grayValue << 8)+grayValue);
                bt.setPixel(j, i, color);
            }
        return bt;
    }

    public Bitmap getEdgeBitmap()
    {
        int grayMatrix[][] = getGrayMatrix(bitmap);

        int GS[][] = GS(grayMatrix , 1 , 0.6f);
        getGxyAndAngle(GS);
        Th = getTh(Gxy);
        int [][] mayEdgeMatrix = getMaxmaiLimitMatrix(Gxy,angle);
        Tl = getTl(Th);
        ThTlLimitPoints(mayEdgeMatrix , Th , Tl);
        traceEdge(mayEdgePointGrayValue , mayEdgeMatrix);
        for(int x=1;x<h-1;x++)
            for(int y=1;y<w-1;y++) {
                if(mayEdgeMatrix[x][y]!=255)
                    mayEdgeMatrix[x][y]=0;
            }
        return  createGrayImage(mayEdgeMatrix);

    }

    class Point {
        Point(int a, int b) {
            this.x = a;
            this.y = b;
        }

        int x;
        int y;
    }

}
View Code

  实现了上述算法移植到手机,发现在java平台上实现后运行效果非常好,而运行在手机端上效果很差。同样的算法为何结果相差如此之大呢?

经过一步步的排查,将每一步得到的数组打印到文件与java打印的数组比较,最终发现了原因,罪魁祸首就是安卓加载jpg、png甚至是bitmap到内存时图片的宽高都会变大,且比率不一定相同,这样导致我加载同一张图片时,android自动对图片进行了放大,导致手机的边缘更加模糊且无故增加了一些细节。为了解决这个问问题,我先获取未加载时候图片的宽高,在加载图片后再压缩回加载前图片的大小。 在acitiviy里有讲解,下面直接贴出代码:

package com.example.lammy.imagetest;

import android.content.ContentResolver;
import android.content.Context;
import android.content.Intent;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.graphics.Matrix;
import android.media.ThumbnailUtils;
import android.net.Uri;
import android.os.Environment;
import android.provider.MediaStore;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.util.DisplayMetrics;
import android.view.View;
import android.widget.ImageView;
import android.widget.Toast;

import java.io.BufferedOutputStream;
import java.io.BufferedWriter;
import java.io.DataInputStream;
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.FileWriter;
import java.io.InputStream;
import java.io.Writer;

public class MainActivity extends AppCompatActivity {

    ImageView imageView;
    Bitmap bt;

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);
        imageView = (ImageView) findViewById(R.id.image);

        int scr =R.drawable.xl;
        //获取源图像的宽和高(因为android在加载图片到手机里的时候会使得图片宽高变大,且比率不一定一样,为了让其不变形必须记下加载前的图片宽高)再压缩回去
        BitmapFactory.Options options=new BitmapFactory.Options();
        options.inJustDecodeBounds=true;//(设为true 图片不加入内存效率高)
        BitmapFactory.decodeResource(getResources(),scr , options);
        int outWidth = options.outWidth;
        int outHeight = options.outHeight;
        System.out.println("jpg图原图"+outHeight+","+outWidth);
        options.inJustDecodeBounds=false;
        bt = BitmapFactory.decodeResource(getResources(),scr );
        System.out.println("加载后图:"+bt.getHeight()+","+bt.getWidth());
        //将图片压缩到加载前的宽高,当然图片太大也可以宽高同比率压缩。
        bt =  ThumbnailUtils.extractThumbnail(bt,outWidth,outHeight);
        imageView.setImageBitmap(bt);

       // jpg图原图271,482
       // 加载后图:711,1265
    }

    public void click(View view) {
        MyCanny myCanny =new MyCanny(bt,0.85f);
        int Gs [][] =myCanny.GS(myCanny.getGrayMatrix(bt) , 1 , 0.6f);
        try {
            outPutArray(Gs ,"grayMatrix.txt");
        } catch (Exception e) {
            e.printStackTrace();
        }
        Bitmap edge = myCanny.getEdgeBitmap();
        edge =  ThumbnailUtils.extractThumbnail(edge,1000,600);
        imageView.setImageBitmap(edge);
    }

  //  将数组写入到data目录
    public  void outPutArray(int[] [] a ,String filename) throws Exception {
        try {
            File file = new File("data/data/com.example.lammy.imagetest/files/"+filename);
            FileWriter fileWriter = new FileWriter(file);
            BufferedWriter bw=new BufferedWriter(fileWriter);
            int size = 15;
            for(int i = 0 ; i < size ; i ++) {
                for (int j = 0; j < size; j++) {
                    String s = a[i][j] + "   ";
                    bw.write(s);
                    bw.flush();
                }
                bw.newLine();
                bw.flush();
            }
            bw.flush();
            bw.close();
        }catch (Exception e){
            System.out.println("mmmmmmmmmmmmmmmmmmmmm");
        }
    }
}
View Code

打印了一下加载图前后的大小:

  jpg图原图271,482
 加载后图:711,1265

 发现加载到内存后放大了2.6倍左右(原因:decodeResource这个方法会根据drawable所在的资源目录适配不同的dpi,因此放大了),且为了适应手机屏幕的分辨率,宽高放大的比率不相等(相近),这导致了我们算法的效果变差的主要原因,因此我将图像压缩回加载前的大小,再使用canny算法边缘检测,效果就和java的差不多了。下面是效果:

        

      原图的灰度图                                              边缘图

以上是关于canny算法的实现的主要内容,如果未能解决你的问题,请参考以下文章

Canny边缘检测算法的实现

图像处理:推导Canny边缘检测算法

数字图像分析基于Python实现 Canny Edge Detection(Canny 边缘检测算法)

python库skimage 实现canny边缘探测

毕业设计/Matlab系列基于NSCT和改进Canny的图像边缘检测matlab实现

Canny边缘检测算法原理及其VC实现详解