Python之csv模块
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Python之csv模块相关的知识,希望对你有一定的参考价值。
参考技术A csv文件具有格式简单,快速存取,兼容性好等特点,工程、金融、商业等很多数据文件都是采用csv文件保存和处理。工作中数据处理也用到了csv,简要总结下使用经验,特别是那些由于本地兼容性导致的与官方文档的差异使用。
csv(comma Seperated Values)文件的格式非常简单,类似一个文本文档,每一行保存一条数据,同一行中的各个数据通常采用逗号(或tab)分隔。
python自带了csv模块,专门用于处理csv文件的读取和存档。
csv模块中,主要由两种方式存取csv文件:函数方法;类方法。
csv.reader(csvfile,dialect =\'excel\',** fmtparams)
返回一个reader对象,它将迭代给定csvfile中的行。
csvfile可以是任何支持迭代器协议的对象,并在每次next()调用其方法时返回一个字符串- 文件对象和列表对象都是合适的。如果csvfile是一个文件对象,那么它必须在平台上以“b”标志打开,这会产生影响。可以给出可选的 dialect 参数,该参数用于定义特定于CSV方言的一组参数。它可以是类的子类的实例,也可以是函数Dialect返回的字符串之一 list_dialects()。其他可选的fmtparams可以给出关键字参数来覆盖当前方言中的各个格式参数。
csv.writer(csvfile,dialect =\'excel\',** fmtparams)
返回一个编写器对象,负责将用户的数据转换为给定的类文件对象上的分隔字符串。
csvfile可以是带有write()方法的任何对象 。如果csvfile是一个文件对象,那么它必须在平台上以“b”标志打开,这会产生影响。 可以给出可选的dialect参数,该参数用于定义特定于CSV方言的一组参数。它可以是类的子类的实例,也可以是函数Dialect返回的字符串之一 list_dialects()。可以给出其他可选的fmtparams关键字参数来覆盖当前dialect中的各个格式参数。
class csv.DictReader(f,fieldnames = None,restkey = None,restval = None,dialect =\'excel\',* args,** kwds)
创建一个像常规阅读器一样操作的对象,但将读取的信息映射到一个dict,其键由可选的 fieldnames 参数给出。 字段名 的参数是一个序列,其元素与输入数据的顺序中的字段相关联。这些元素成为结果字典的关键。如果省略 fieldnames 参数,则文件 f 的第一行中的 值 将用作字段名。如果读取的行包含的字段多于字段名序列,则将剩余数据添加 为由restkey 值键入的序列。如果读取的行的字段数少于字段名序列,则其余的键将采用可选的 restval 参数的值。任何其他可选或关键字参数都将传递给基础 reader 实例。
class csv.DictWriter(f,fieldnames,restval =\'\',extrasaction =\'raise\',dialect =\'excel\',* args,** kwds)
创建一个像常规编写器一样操作的对象,但将字典映射到输出行。的字段名的参数是一个序列识别在哪些值在传递给字典中的顺序按键的writerow()方法被写入到文件˚F。如果字典缺少字段名中的键,则可选的restval参数指定要写入的值。如果传递给方法的字典包含在字段名中找不到的键,则可选的extrasaction参数指示要采取的操作。如果设置为a 则被提升。如果设置为writerow()\'raise\'ValueError\'ignore\',字典中的额外值将被忽略。任何其他可选或关键字参数都将传递给基础 writer实例。
请注意,与DictReader类不同,它的fieldnames参数DictWriter不是可选的。由于Python的dict 对象没有排序,因此没有足够的信息来推断应该将行写入文件f的顺序。
python之panda模块2
上一节中说了Python的基础数据结构,这一节我来总结一下我所学到的pandas的部分知识点:
Pandas 是 Python 的核心数据分析支持库,提供了快速、灵活、明确的数据结构,旨在简单、直观地处理关系型、标记型数据
1:pandas读取数据:
data = pd.read_csv( my_file.csv )
data = pd.read_csv( my_file.csv , sep= ; , encoding= latin-1 , nrows=1000, skiprows=[2,5])
sep 代表的是分隔符。如果你在使用法语数据,excel 中 csv 分隔符是「;」,因此你需要显式地指定它。
编码设置为 latin-1 来读取法语字符。
nrows=1000 表示读取前 1000 行数据。
skiprows=[2,5] 表示你在读取文件的时候会移除第 2 行和第 5 行。
最常用的功能:read_csv, read_excel
其他一些很棒的功能:read_clipboard, read_sql
2:pandas查看数据
- 计算基本的统计数据
data.describe()
- 打印出数据的前 3 行。
data.head(5)
- .tail() 对应的是数据的最后5行。
data.tail(5)
- 打印出第3行,索引为3 的所有数据
data.loc[3]
- 第四到第六行(左闭右开)的数据子集
data.loc[range(4,6)]
今天先学到这里,后续接着补充
一步一步提升,稳赢!!!
无论什么事情,只要投入足够有效的时间才能把它做好。
以上是关于Python之csv模块的主要内容,如果未能解决你的问题,请参考以下文章
谈谈Python实战数据可视化之matplotlib模块(实战篇)