二叉树遍历算法——包含递归前中后序和层次,非递归前中后序和层次遍历共八种
Posted 专注it
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了二叉树遍历算法——包含递归前中后序和层次,非递归前中后序和层次遍历共八种相关的知识,希望对你有一定的参考价值。
首先,要感谢网上的参考资料。
- http://mengliao.blog.51cto.com/876134/1178079(作者:BlackAlpha)
- http://blog.csdn.net/fzh1900/article/details/14056735(作者:_云淡风轻)
- http://blog.csdn.net/stpeace/article/details/8138458(作者:stpeace)
二叉树是使用的比较广泛的一种数据结构,这里我写了二叉树的相关操作,包括初始化、新建、以及遍历。这里主要是为了学习二叉树的遍历算法,我总结后,写了八种二叉树的遍历算法,分别是:
1.递归先序遍历
2.递归中序遍历
3.递归后序遍历
4.非递归先序遍历(单栈辅助)
5.非递归中序遍历(单栈辅助)
6.非递归后序遍历(单栈辅助)
7.递归层次遍历
8.非递归层次遍历(队列辅助)
2.递归中序遍历
3.递归后序遍历
4.非递归先序遍历(单栈辅助)
5.非递归中序遍历(单栈辅助)
6.非递归后序遍历(单栈辅助)
7.递归层次遍历
8.非递归层次遍历(队列辅助)
当然,这里还要用到栈和队列,博客中以前有提到过(链式的栈和链式队列),其实还可以用顺序栈和顺序队列的(博客中后面将补上这块)。下面直接上代码:
LinkStack.h 链式栈头文件
- #ifndef _LINK_STACK_H_H
- #define _LINK_STACK_H_H
- #include "BiTree.h"
- typedef pBiTree LStackEle;
- typedef struct LSNODE
- {
- LStackEle ele;
- struct LSNODE *pnext;
- }LSNode, *pLSNode;
- typedef struct LSTACK
- {
- pLSNode top;
- }LStack, *pLStack;
- //栈初始化
- void InitLinkStack(LStack &s);
- //入栈
- void PushLinkStack(LStack &s, LStackEle ele);
- //出栈
- void PopLinkStack(LStack &s, LStackEle &ele);
- //判断栈是否为空
- bool IsemptyLinkStack(LStack s);
- //获得栈顶值
- LStackEle GetTopLinkStack(LStack s);
- #endif
- #ifndef _LINK_QUEUE_H_H
- #define _LINK_QUEUE_H_H
- #include "BiTree.h"
- typedef pBiTree LQueueEle;
- typedef struct LQNODE
- {
- LQueueEle ele;
- struct LQNODE *pnext;
- }LQNode, *pLQNode;
- typedef struct LQUEUE
- {
- pLQNode rear;
- pLQNode front;
- }LQueue, *pLQueue;
- //初始化队列
- void InitLinkQueue(LQueue &q);
- //入队
- void EnLinkQueue(LQueue &q, LQueueEle ele);
- //出队
- void DeLinkQueue(LQueue &q, LQueueEle &ele);
- //判断队列是否为空
- bool IsemptyLinkQueue(LQueue q);
- //获得队头元素值
- LQueueEle GetFrontLinkQueue(LQueue q);
- #endif
BiTree.h 二叉树头文件
- #ifndef _BITREE_H_H
- #define _BITREE_H_H
- typedef struct BINODE
- {
- int ele;
- struct BINODE *plchild;
- struct BINODE *prchild;
- }BiNode, *pBiTree;
- //初始化二叉树(含根节点)
- void InitBiTree(pBiTree &bt, int ele);
- //创建二叉树节点
- BiNode *CreateBiTreeNode(pBiTree lchild, pBiTree rchild, int ele);
- //插入左子二叉树
- void InsertLChild(pBiTree parent, pBiTree lchild);
- //插入右子二叉树
- void InsertRChild(pBiTree parent, pBiTree rchild);
- //计算二叉树的深度
- int DeepBiTree(pBiTree bt);
- //递归先序遍历
- void RePreOrderTraverse(pBiTree bt);
- //递归中序遍历
- void ReInOrderTraverse(pBiTree bt);
- //递归后序遍历
- void RePostOrderTraverse(pBiTree bt);
- //非递归先序遍历二
- void NonRePreOrderTraverse(pBiTree bt);
- //非递归中序遍历
- void NonReInOrderTraverse(pBiTree bt);
- //非递归后序遍历
- void NonRePostOrderTraverse(pBiTree bt);
- //非递归层次遍历
- void NonReLevelOrderTraverse(pBiTree bt);
- //递归层次遍历
- void ReLevelOrderTraverse(pBiTree bt);
- void PrintLevelNode(pBiTree bt, int level);
- #endif
LinkStack.cpp 链式栈源文件
- #include "LinkStack.h"
- #include <stdlib.h>
- #include <stdio.h>
- //栈初始化
- void InitLinkStack(LStack &s)
- {
- s.top= NULL;
- }
- //入栈
- void PushLinkStack(LStack &s, LStackEle ele)
- {
- pLSNode pnew = (pLSNode)malloc(sizeof(LSNode));
- if (pnew == NULL)
- {
- printf("内存分配失败!\n");
- exit(EXIT_FAILURE);
- }
- pnew->ele = ele;
- pnew->pnext = s.top;
- s.top = pnew;
- }
- //出栈
- void PopLinkStack(LStack &s, LStackEle &ele)
- {
- pLSNode pt = NULL;
- if (IsemptyLinkStack(s))
- {
- printf("栈为空,不能出栈操作!\n");
- exit(EXIT_FAILURE);
- }
- else
- {
- ele = s.top->ele;
- pt = s.top;
- s.top = pt->pnext;
- free(pt);
- pt = NULL;
- }
- }
- //判断栈是否为空
- bool IsemptyLinkStack(LStack s)
- {
- if (s.top == NULL)
- return true;
- else
- return false;
- }
- //获得栈顶元素
- LStackEle GetTop(LStack s)
- {
- if (IsemptyLinkStack(s))
- {
- printf("栈为空,不能获得栈顶元素值!\n");
- exit(EXIT_FAILURE);
- }
- else
- return s.top->ele;
- }
- #include <stdlib.h>
- #include <stdio.h>
- #include "LinkQueue.h"
- //初始化队列
- void InitLinkQueue(LQueue &q)
- {
- q.front = (pLQNode)malloc(sizeof(LQNode));
- if (q.front == NULL)
- {
- printf("内存分配失败!\n");
- exit(EXIT_FAILURE);
- }
- q.rear = q.front;
- }
- //入队
- void EnLinkQueue(LQueue &q, LQueueEle ele)
- {
- pLQNode pnew = (pLQNode)malloc(sizeof(LQNODE));
- if (pnew == NULL)
- {
- printf("内存分配失败!\n");
- exit(EXIT_FAILURE);
- }
- pnew->ele = ele;
- pnew->pnext = NULL;
- q.rear->pnext = pnew;
- q.rear = pnew;
- }
- //出队
- void DeLinkQueue(LQueue &q, LQueueEle &ele)
- {
- pLQNode pt = NULL;
- if (IsemptyLinkQueue(q))
- {
- printf("队列为空,不能出队操作!\n");
- exit(EXIT_FAILURE);
- }
- ele = q.front->pnext->ele;
- pt = q.front->pnext;
- q.front->pnext = pt->pnext;
- free(pt);
- /*
- pt是最后一个节点时,释放完了以后,尾指针指向的
- 是随机内存,所以让它和头指针指向同一个地址。
- */
- if (q.front->pnext == NULL)
- q.rear = q.front;
- }
- //判断队列是否为空
- bool IsemptyLinkQueue(LQueue q)
- {
- if (q.front == q.rear)
- return true;
- else
- return false;
- }
- //获得队头元素
- LQueueEle GetFrontLinkQueue(LQueue q)
- {
- if (IsemptyLinkQueue(q))
- {
- printf("队列为空,不能获得队头元素!\n");
- exit(EXIT_FAILURE);
- }
- return q.front->pnext->ele;
- }
BiTree.cpp 二叉树源文件
- #include <stdlib.h>
- #include <stdio.h>
- #include "BiTree.h"
- #include "LinkStack.h"
- #include "LinkQueue.h"
- //初始化二叉树(含根节点)
- void InitBiTree(pBiTree &bt, int ele)
- {
- bt = (BiNode *)malloc(sizeof(BiNode));
- if (bt == NULL)
- {
- printf("内存分配失败!\n");
- exit(EXIT_FAILURE);
- }
- bt->ele = ele;
- bt->plchild = NULL;
- bt->prchild = NULL;
- }
- //创建二叉树节点
- BiNode *CreateBiTreeNode(pBiTree lchild, pBiTree rchild, int ele)
- {
- BiNode *pnew = (BiNode *)malloc(sizeof(BiNode));
- if (pnew == NULL)
- {
- printf("内存分配失败!\n");
- exit(EXIT_FAILURE);
- }
- pnew->ele = ele;
- pnew->plchild = lchild;
- pnew->prchild = rchild;
- return pnew;
- }
- //插入左子二叉树
- void InsertLChild(pBiTree parent, pBiTree lchild)
- {
- parent->plchild = lchild;
- }
- //插入右子二叉树
- void InsertRChild(pBiTree parent, pBiTree rchild)
- {
- parent->prchild = rchild;
- }
- //用递归的方法计算二叉树的深度
- int DeepBiTree(pBiTree bt)
- {
- int ldeep = 0, rdeep = 0;
- if (bt)
- {
- ldeep = DeepBiTree(bt->plchild);
- rdeep = DeepBiTree(bt->prchild);
- return (ldeep > rdeep ? ldeep : rdeep) + 1;
- }
- else
- return 0;
- }
- //(一)递归先序遍历
- void RePreOrderTraverse(pBiTree bt)
- {
- if(bt != NULL)
- {
- printf("%d ", bt->ele);
- RePreOrderTraverse(bt->plchild);
- RePreOrderTraverse(bt->prchild);
- }
- }
- //(二)递归中序遍历
- void ReInOrderTraverse(pBiTree bt)
- {
- if(bt != NULL)
- {
- ReInOrderTraverse(bt->plchild);
- printf("%d ", bt->ele);
- ReInOrderTraverse(bt->prchild);
- }
- }
- //(三)递归后序遍历
- void RePostOrderTraverse(pBiTree bt)
- {
- if(bt != NULL)
- {
- RePostOrderTraverse(bt->plchild);
- RePostOrderTraverse(bt->prchild);
- printf("%d ", bt->ele);
- }
- }
- //(四)非递归先序遍历
- void NonRePreOrderTraverse(pBiTree bt)
- {
- LStack s;
- InitLinkStack(s);
- while (bt != NULL || !IsemptyLinkStack(s))
- {
- while ( bt != NULL)
- {
- printf("%d ", bt->ele);
- PushLinkStack(s, bt);
- bt = bt->plchild;
- }
- if (!IsemptyLinkStack(s))
- {
- PopLinkStack(s, bt);
- bt = bt->prchild;
- }
- }
- }
- //(五)非递归中序遍历
- void NonReInOrderTraverse(pBiTree bt)
- {
- LStack s;
- InitLinkStack(s);
- while (bt != NULL || !IsemptyLinkStack(s))
- {
- while (bt != NULL)
- {
- PushLinkStack(s, bt);
- bt = bt->plchild;
- }
- if (!IsemptyLinkStack(s))
- {
- PopLinkStack(s, bt);
- printf("%d ", bt->ele);
- bt = bt->prchild;
- }
- }
- }
- //(六)非递归后序遍历
- void NonRePostOrderTraverse(pBiTree bt)
- {
- LStack s;
- InitLinkStack(s);
- BiNode * pt = NULL;
- while (bt != NULL || !IsemptyLinkStack(s))
- {
- while (bt != NULL)
- {
- PushLinkStack(s, bt);
- bt = bt->plchild;
- }
- if (!IsemptyLinkStack(s))
- {
- PopLinkStack(s, bt);
- if (bt->prchild == NULL || bt->prchild == pt)
- {
- printf("%d ", bt->ele);
- pt = bt;
- bt = NULL;
- }
- else
- {
- PushLinkStack(s, bt);
- bt = bt->prchild;
- }
- }
- }
- }
- //(七)非递归层次遍历
- void NonReLevelOrderTraverse(pBiTree bt)
- {
- LQueue q;
- InitLinkQueue(q);
- BiNode *pt = NULL;
- if (bt != NULL)
- {
- EnLinkQueue(q, bt);
- while (!IsemptyLinkQueue(q))
- {
- DeLinkQueue(q, pt);
- printf("%d ", pt->ele);
- if (pt->plchild != NULL)
- EnLinkQueue(q, pt->plchild);
- if (pt->prchild != NULL)
- EnLinkQueue(q, pt->prchild);
- }
- }
- }
- //(八)递归层级遍历
- void ReLevelOrderTraverse(pBiTree bt)
- {
- int i, deep;
- if (bt != NULL)
- {
- deep = DeepBiTree(bt);
- for(i=1; i<deep+1; i++)
- PrintLevelNode(bt, i);
- }
- }
- void PrintLevelNode(pBiTree bt, int level)
- {
- if (bt != NULL && level > 0)
- {
- if (level == 1)
- printf("%d ", bt->ele);
- PrintLevelNode(bt->plchild, level - 1);
- PrintLevelNode(bt->prchild, level - 1);
- }
- }
main.cpp 测试程序源文件
- #include <stdio.h>
- #include "BiTree.h"
- #include "LinkStack.h"
- #include "LinkQueue.h"
- int main(void)
- {
- //二叉树测试代码
- pBiTree bt;
- InitBiTree(bt, 10);
- pBiTree lchild = CreateBiTreeNode(CreateBiTreeNode(NULL,
- CreateBiTreeNode(CreateBiTreeNode(NULL, NULL, 80),
- NULL, 55), 40), NULL, 20);
- InsertLChild(bt, lchild);
- pBiTree rchild = CreateBiTreeNode(NULL, CreateBiTreeNode(
- CreateBiTreeNode(NULL, NULL, 60),
- CreateBiTreeNode(NULL, NULL, 70), 50), 30);
- InsertRChild(bt, rchild);
- printf("********二叉树图形********\n");
- printf(" 10\n");
- printf(" / \\\n");
- printf(" 20 30\n");
- printf(" / \\ / \\\n");
- printf(" 40 N N 50\n");
- printf(" / \\ / \\\n");
- printf(" N 55 60 70\n");
- printf(" / \\ / \\ / \\\n");
- printf(" 80 N N N N N\n");
- printf(" / \\\n");
- printf(" N N\n");
- printf("二叉树的深度:%d", DeepBiTree(bt));
- printf("\n**********************************");
- printf("\n递归前序遍历:");
- RePreOrderTraverse(bt);
- printf("\n递归中序遍历:");
- ReInOrderTraverse(bt);
- printf("\n递归后序遍历:");
- RePostOrderTraverse(bt);
- printf("\n**********************************");
- printf("\n非递归前序遍历:");
- NonRePreOrderTraverse(bt);
- printf("\n非递归中序遍历:");
- NonReInOrderTraverse(bt);
- printf("\n非递归后序遍历:");
- NonRePostOrderTraverse(bt);
- printf("\n**********************************");
- printf("\n非递归层次遍历:");
- NonReLevelOrderTraverse(bt);
- printf("\n递归层次遍历:");
- ReLevelOrderTraverse(bt);
- <span style="white-space:pre"> </span>putchar(‘\n‘);
- return 0;
以上是关于二叉树遍历算法——包含递归前中后序和层次,非递归前中后序和层次遍历共八种的主要内容,如果未能解决你的问题,请参考以下文章