数学:lucas定理的总结

Posted 既然选择了远方,便只顾风雨兼程

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了数学:lucas定理的总结相关的知识,希望对你有一定的参考价值。

  今天考试的题目中有大组合数取模,不会唉,丢了45分,我真是个弱鸡,现在还不会lucas。

  所以今天看了一下,定理差不多是:

(1)Lucas定理:p为素数,则有:

  即:lucas(n,m,p)=c(n%p,m%p)*lucas(n/p,m/p,p)   然后留下我的理解:

  用递归的方式去证明这个式子;

  先考虑阶乘,在%p的意义下,x!=(p!^(x/p))*(x/p)!*(x%p)!这里把有p因子的数不模p,用于组合数的‘抵消’。

  在看到组合数 :

   C(x,y)=x!/((x-y)!*y!)

      =(p!^(x/p))*(x/p)!*(x%p)!/((p!^((x-y)/p))*((x-y)/p)!*((x-y)%p)!*(p!^(y/p))*(y/p)!*(y%p)!)

      =p!^((x/p)-(x-y)/p)-y/p)*C(x/p,y/p)*C(x%p,y%p)

   发现这个式子和定理很像了,下面讨论一下:

    1.(x/p)-(x-y)/p)-y/p=0 这样是符合的

    2.(x/p)-(x-y)/p)-y/p=1 这时值要为0,式子貌似不符合,咋办?要相信我们的数学家们,分析一下,满足这个条件的话,还要满足:x%p<(x-y)%p+y%p注意是小于号,仔细体会一下不难得到:x%p小于(x-y)%p,y%p中的任意一个;这样的话,C(x%p,y%p)必定等于0,所以不影响答案。

 

以上是关于数学:lucas定理的总结的主要内容,如果未能解决你的问题,请参考以下文章

lucas定理和组合数学

组合数学lucas定理 BZOJ2982 combination

hdu 3037 费马小定理+逆元求组合数+Lucas定理

组合数学+lucas定理+逆元 BZOJ2111 [ZJOI2010]Perm 排列计数

[CodeVs1515]跳(lucas定理+费马小定理+乘法逆元)

[模板] 数学基础:逆元/exGCD/exCRT/Lucas定理/exLucas