[Locked] Paint House I & II

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[Locked] Paint House I & II相关的知识,希望对你有一定的参考价值。

Paint House

There are a row of n houses, each house can be painted with one of the three colors: red, blue or green. The cost of painting each house with a certain color is different. You have to paint all the houses such that no two adjacent houses have the same color.

The cost of painting each house with a certain color is represented by a n x 3 cost matrix. For example, costs[0][0] is the cost of painting house 0 with color red; costs[1][2] is the cost of painting house 1 with color green, and so on... Find the minimum cost to paint all houses.

Note:
All costs are positive integers.

分析:

  典型动态规划,通过遍历所有情况可以弥补前面的选择对后面的影响。时间复杂度为O(n*3*3) = O(n);利用滚动数组,空间复杂度为O(3*2) = O(1)。

代码:

int minCost2(vector<vector<int> > cost) {
    vector<int> opt(3, 0), temp(3, 0);
    for(int i = 0; i < cost.size(); i++) {
        for(int j = 0; j < 3; j++) {
            temp[j] = INT_MAX;
            for(int k = 0; k < 3; k++) {
                if(j != k)
                    temp[j] = min(temp[j], opt[k] + cost[i][j]);
            }
        }
        opt.swap(temp);
    }
    int minc = INT_MAX;
    for(int i : opt)
        minc = min(minc ,i);
    return minc;
}

 

 

Paint House II

There are a row of n houses, each house can be painted with one of the k colors. The cost of painting each house with a certain color is different. You have to paint all the houses such that no two adjacent houses have the same color.

The cost of painting each house with a certain color is represented by a n x k cost matrix. For example, costs[0][0] is the cost of painting house 0 with color 0; costs[1][2]is the cost of painting house 1 with color 2, and so on... Find the minimum cost to paint all houses.

Note:
All costs are positive integers.

Follow up:
Could you solve it in O(nk) runtime?

分析:

  如果采用I中的方法,时间复杂度为O(n*k*k),空间复杂度为O(k*2)。为了降低时间复杂度,可以通过减少两重k循环里的大量重复计算来使得O(k*k)的复杂度变为O(k)。此题中,对于j = j1, j2两种情况,它们的内部k循环有k-2次是重复比较了cost[i][j1] + x和cost[i][j2] + x的大小的,可以通过一次cost[i][j1]和cost[i][j2]的比较替代;扩展到j = 1...k种情况,只需找到小的cost[i][j], j = 1...k.

解法:

  动态规划,第i轮的最小代价是j = j1时,假设第i + 1轮中,j = j1是默认剔除的,很简单,前一轮的结果后一轮的最小结果都应该使用的,那么第i + 1轮的最小代价是min(cost[i+1][j])的j的取值时;然而j = j1并不是默认剔除的,故在第i + 1轮是cost[i + 1][j1]是无法使用上一轮的最小结果的,但它应该使用第二小的结果,故只需要比较第i + 1轮中,j == j1和j != j1两种情况的值即可。时间复杂度为O(n*(k + 常数)) = O(nk),空间复杂度,利用滚动值存储中间结果,为O(1)

代码:

int minCost(vector<vector<int> > cost) {
    int min1 = 0, min2 = 0, record = -1, c = INT_MAX;
    for(int i = 0; i < cost.size(); i++) {
        int minval1 = INT_MAX, minval2 = INT_MAX, last = -1;
        for(int j = 0; j < cost[0].size(); j++) {
            if(record != j) {
                if(minval1 > cost[i][j]) {
                    minval2 = minval1;
                    minval1 = cost[i][j];
                    last = j;
                }
                else
                    minval2 = min(minval2, cost[i][j]);
            }
        }
        int a = minval1 + min1, b = minval2 + min1;
        if(record != -1)
            c = cost[i][record] + min2;
        if(a < c) {
            record = last;
            min1 = a;
            min2 = min(b, c);
        }
        else {
            min1 = c;
            min2 = a;
        }
        
    }
    cout<<endl;
    return min1;
}

 

以上是关于[Locked] Paint House I & II的主要内容,如果未能解决你的问题,请参考以下文章

265. Paint House II

LeetCode 265: Paint House II

lintcode-medium-Paint House

256. Paint House

256. Paint House

256. Paint House