[Locked] Paint House I & II
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[Locked] Paint House I & II相关的知识,希望对你有一定的参考价值。
Paint House
There are a row of n houses, each house can be painted with one of the three colors: red, blue or green. The cost of painting each house with a certain color is different. You have to paint all the houses such that no two adjacent houses have the same color.
The cost of painting each house with a certain color is represented by a n x 3
cost matrix. For example, costs[0][0]
is the cost of painting house 0 with color red; costs[1][2]
is the cost of painting house 1 with color green, and so on... Find the minimum cost to paint all houses.
Note:
All costs are positive integers.
分析:
典型动态规划,通过遍历所有情况可以弥补前面的选择对后面的影响。时间复杂度为O(n*3*3) = O(n);利用滚动数组,空间复杂度为O(3*2) = O(1)。
代码:
int minCost2(vector<vector<int> > cost) { vector<int> opt(3, 0), temp(3, 0); for(int i = 0; i < cost.size(); i++) { for(int j = 0; j < 3; j++) { temp[j] = INT_MAX; for(int k = 0; k < 3; k++) { if(j != k) temp[j] = min(temp[j], opt[k] + cost[i][j]); } } opt.swap(temp); } int minc = INT_MAX; for(int i : opt) minc = min(minc ,i); return minc; }
Paint House II
There are a row of n houses, each house can be painted with one of the k colors. The cost of painting each house with a certain color is different. You have to paint all the houses such that no two adjacent houses have the same color.
The cost of painting each house with a certain color is represented by a n x k
cost matrix. For example, costs[0][0]
is the cost of painting house 0 with color 0; costs[1][2]
is the cost of painting house 1 with color 2, and so on... Find the minimum cost to paint all houses.
Note:
All costs are positive integers.
Follow up:
Could you solve it in O(nk) runtime?
分析:
如果采用I中的方法,时间复杂度为O(n*k*k),空间复杂度为O(k*2)。为了降低时间复杂度,可以通过减少两重k循环里的大量重复计算来使得O(k*k)的复杂度变为O(k)。此题中,对于j = j1, j2两种情况,它们的内部k循环有k-2次是重复比较了cost[i][j1] + x和cost[i][j2] + x的大小的,可以通过一次cost[i][j1]和cost[i][j2]的比较替代;扩展到j = 1...k种情况,只需找到小的cost[i][j], j = 1...k.
解法:
动态规划,第i轮的最小代价是j = j1时,假设第i + 1轮中,j = j1是默认剔除的,很简单,前一轮的结果后一轮的最小结果都应该使用的,那么第i + 1轮的最小代价是min(cost[i+1][j])的j的取值时;然而j = j1并不是默认剔除的,故在第i + 1轮是cost[i + 1][j1]是无法使用上一轮的最小结果的,但它应该使用第二小的结果,故只需要比较第i + 1轮中,j == j1和j != j1两种情况的值即可。时间复杂度为O(n*(k + 常数)) = O(nk),空间复杂度,利用滚动值存储中间结果,为O(1)
代码:
int minCost(vector<vector<int> > cost) { int min1 = 0, min2 = 0, record = -1, c = INT_MAX; for(int i = 0; i < cost.size(); i++) { int minval1 = INT_MAX, minval2 = INT_MAX, last = -1; for(int j = 0; j < cost[0].size(); j++) { if(record != j) { if(minval1 > cost[i][j]) { minval2 = minval1; minval1 = cost[i][j]; last = j; } else minval2 = min(minval2, cost[i][j]); } } int a = minval1 + min1, b = minval2 + min1; if(record != -1) c = cost[i][record] + min2; if(a < c) { record = last; min1 = a; min2 = min(b, c); } else { min1 = c; min2 = a; } } cout<<endl; return min1; }
以上是关于[Locked] Paint House I & II的主要内容,如果未能解决你的问题,请参考以下文章