深度学习笔记
Posted 闲云清烟
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了深度学习笔记相关的知识,希望对你有一定的参考价值。
Assume the output from a layer in CNN is N × N × d dimension, which is the output of d filters for N × N spatial cells. Each spatial cell is computed from a receptive field in the input image.
The receptive fields of all the spatial cells in the input image can highly overlap with each other. The size of one receptive field can be computed layer by layer in CNN. In a convolution (pooling) layer, if the filter (pooling) size is a×a and the stride is s, then T ×T cells in the output of this layer corresponds to [s*(T ? 1) + a] × [s*(T ? 1) + a] cells in the input of this layer. For example, one cell in the CONV5 (the 5th convolutional)layer of CNN model (imagenet-vgg-m) [40] corresponds to a 139 × 139 receptive field in the 224 × 224 input image (cf. Fig. 4).
以上是关于深度学习笔记的主要内容,如果未能解决你的问题,请参考以下文章
深度学习笔记:Encoder-Decoder模型和Attention模型
深度学习笔记:优化方法总结(BGD,SGD,Momentum,AdaGrad,RMSProp,Adam)
《繁凡的深度学习笔记》前言目录大纲 一文让你完全弄懂深度学习所有基础(DL笔记整理系列)