146. LRU Cache

Posted 鱼与海洋

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了146. LRU Cache相关的知识,希望对你有一定的参考价值。

Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and set.

get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
set(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.

 

难一点的设计的题一般就是double list + hashmap<key, node>[LRU , mid stack]  or tree + hashmap <key, node> [relation tree or tire]

 

//new node in the tail, old node in the head;
class DoubleList{
    int key;
    int val;
    DoubleList prev;
    DoubleList next;
    public DoubleList(int key, int val){
        this.key = key;
        this.val = val;
    }
}
public class LRUCache {
    int index = 0;
    int capacity;
    DoubleList tail;
    DoubleList head;
    HashMap<Integer, DoubleList> map;
    public LRUCache(int capacity) {
       this.capacity = capacity;
       this.map = new  HashMap<Integer, DoubleList>();
       this.head = new DoubleList(0,0);
       this.tail = new DoubleList(0,0);
       head.next = tail;
       tail.prev = head;
       this.index = 0;
    }
    
    public void addFirst(DoubleList node){
      node.next= head.next;
      node.next.prev = node;
      node.prev = head;
      head.next = node;
    }
    
    public void remove(DoubleList node){
        node.prev.next = node.next;
        node.next.prev = node.prev;
    }
    
    public int get(int key) {
      if(map.containsKey(key)){
         DoubleList node = map.get(key);
         remove(node);
         addFirst(node);
         return node.val;
      }
      return -1;
    }
    
    public void set(int key, int value) {
        if(map.containsKey(key)){
            map.get(key).val = value;
            DoubleList node = map.get(key);
            remove(node);
            addFirst(node);
            return;
        }
        else{
            DoubleList node =  new DoubleList(key, value);
            map.put(key, node);
            if(index < capacity){
                index ++;
                addFirst(node);
            }
            else{
                map.remove(tail.prev.key);
                remove(tail.prev);
                addFirst(node);
            }
        }
    }
   
    
}

 

以上是关于146. LRU Cache的主要内容,如果未能解决你的问题,请参考以下文章

leetcode@ [146] LRU Cache (TreeMap)

146. LRU Cache

146. LRU Cache

leetcode146 LRU Cache

146. LRU Cache

146 LRU Cache