LinkedList源码分析

Posted 前度刘郎

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了LinkedList源码分析相关的知识,希望对你有一定的参考价值。

LinkedList也和ArrayList一样实现了List接口,但是它执行插入和删除操作时比ArrayList更加高效,因为它是基于链表的。基于链表也决定了它在随机访问方面要比ArrayList逊色一点。

    除此之外,LinkedList还提供了一些可以使其作为栈、队列、双端队列的方法。这些方法中有些彼此之间只是名称的区别,以使得这些名字在特定的上下文中显得更加的合适。

    先看LinkedList类的定义。

1 public class LinkedList<E>
2     extends AbstractSequentialList<E>
3     implements List<E>, Deque<E>, Cloneable, java.io.Serializable

    LinkedList继承自AbstractSequenceList、实现了List及Deque接口。其实AbstractSequenceList已经实现了List接口,这里标注出List只是更加清晰而已。AbstractSequenceList提供了List接口骨干性的实现以减少实现List接口的复杂度。Deque接口定义了双端队列的操作。

    LinkedList中之定义了两个属性:

1 private transient Entry<E> header = new Entry<E>(null, null, null);
2 private transient int size = 0;

    size肯定就是LinkedList对象里面存储的元素个数了。LinkedList既然是基于链表实现的,那么这个header肯定就是链表的头结点了,Entry就是节点对象了。一下是Entry类的代码。

复制代码
 1 private static class Entry<E> {
 2     E element;
 3     Entry<E> next;
 4     Entry<E> previous;
 5 
 6     Entry(E element, Entry<E> next, Entry<E> previous) {
 7         this.element = element;
 8         this.next = next;
 9         this.previous = previous;
10     }
11 }
复制代码

    只定义了存储的元素、前一个元素、后一个元素,这就是双向链表的节点的定义,每个节点只知道自己的前一个节点和后一个节点。

    来看LinkedList的构造方法。

复制代码
1 public LinkedList() {
2     header.next = header.previous = header;
3 }
4 public LinkedList(Collection<? extends E> c) {
5     this();
6     addAll(c);
7 }
复制代码

    LinkedList提供了两个构造方法。第一个构造方法不接受参数,只是将header节点的前一节点和后一节点都设置为自身(注意,这个是一个双向循环链表,如果不是循环链表,空链表的情况应该是header节点的前一节点和后一节点均为null),这样整个链表其实就只有header一个节点,用于表示一个空的链表。第二个构造方法接收一个Collection参数c,调用第一个构造方法构造一个空的链表,之后通过addAll将c中的元素全部添加到链表中。来看addAll的内容。

复制代码
 1 public boolean addAll(Collection<? extends E> c) {
 2     return addAll(size, c);
 3 }
 4 // index参数指定collection中插入的第一个元素的位置
 5 public boolean addAll(int index, Collection<? extends E> c) {
 6     // 插入位置超过了链表的长度或小于0,报IndexOutOfBoundsException异常
 7     if (index < 0 || index > size)
 8         throw new IndexOutOfBoundsException("Index: "+index+
 9                                                 ", Size: "+size);
10     Object[] a = c.toArray();
11 int numNew = a.length;
12 // 若需要插入的节点个数为0则返回false,表示没有插入元素
13     if (numNew==0)
14         return false;
15     modCount++;
16     // 保存index处的节点。插入位置如果是size,则在头结点前面插入,否则获取index处的节点
17 Entry<E> successor = (index==size ? header : entry(index));
18 // 获取前一个节点,插入时需要修改这个节点的next引用
19 Entry<E> predecessor = successor.previous;
20 // 按顺序将a数组中的第一个元素插入到index处,将之后的元素插在这个元素后面
21     for (int i=0; i<numNew; i++) {
22 // 结合Entry的构造方法,这条语句是插入操作,相当于C语言中链表中插入节点并修改指针
23         Entry<E> e = new Entry<E>((E)a[i], successor, predecessor);
24         // 插入节点后将前一节点的next指向当前节点,相当于修改前一节点的next指针
25         predecessor.next = e;
26         // 相当于C语言中成功插入元素后将指针向后移动一个位置以实现循环的功能
27         predecessor = e;
28 }
29 // 插入元素前index处的元素链接到插入的Collection的最后一个节点
30 successor.previous = predecessor;
31 // 修改size
32     size += numNew;
33     return true;
34 }
复制代码

    构造方法中的调用了addAll(Collection<? extends E> c)方法,而在addAll(Collection<? extends E> c)方法中仅仅是将size当做index参数调用了addAll(int index,Collection<? extends E> c)方法。

复制代码
 1 private Entry<E> entry(int index) {
 2         if (index < 0 || index >= size)
 3             throw new IndexOutOfBoundsException("Index: "+index+
 4                                                 ", Size: "+size);
 5         Entry<E> e = header;
 6         // 根据这个判断决定从哪个方向遍历这个链表
 7         if (index < (size >> 1)) {
 8             for (int i = 0; i <= index; i++)
 9                 e = e.next;
10         } else {
11             // 可以通过header节点向前遍历,说明这个一个循环双向链表,header的previous指向链表的最后一个节点,这也验证了构造方法中对于header节点的前后节点均指向自己的解释
12             for (int i = size; i > index; i--)
13                 e = e.previous;
14         }
15         return e;
16     }
复制代码

    结合上面代码中的注释及双向循环链表的知识,应该很容易理解LinkedList构造方法所涉及的内容。下面开始分析LinkedList的其他方法。

    add(E e)

1 public boolean add(E e) {
2     addBefore(e, header);
3     return true;
4 }

    从上面的代码可以看出,add(E e)方法只是调用了addBefore(E e,Entry<E> entry)方法,并且返回true。

    addBefore(E e,Entry<E> entry)

复制代码
1 private Entry<E> addBefore(E e, Entry<E> entry) {
2     Entry<E> newEntry = new Entry<E>(e, entry, entry.previous);
3     newEntry.previous.next = newEntry;
4     newEntry.next.previous = newEntry;
5     size++;
6     modCount++;
7     return newEntry;
8 }
复制代码

    addBefore(E e,Entry<E> entry)方法是个私有方法,所以无法在外部程序中调用(当然,这是一般情况,你可以通过反射上面的还是能调用到的)。

    addBefore(E e,Entry<E> entry)先通过Entry的构造方法创建e的节点newEntry(包含了将其下一个节点设置为entry,上一个节点设置为entry.previous的操作,相当于修改newEntry的“指针”),之后修改插入位置后newEntry的前一节点的next引用和后一节点的previous引用,使链表节点间的引用关系保持正确。之后修改和size大小和记录modCount,然后返回新插入的节点。

    总结,addBefore(E e,Entry<E> entry)实现在entry之前插入由e构造的新节点。而add(E e)实现在header节点之前插入由e构造的新节点。

    add(int index,E e)

1 public void add(int index, E element) {
2     addBefore(element, (index==size ? header : entry(index)));
3 }

    也是调用了addBefore(E e,Entry<E> entry)方法,只是entry节点由index的值决定。

    构造方法,addAll(Collection<? extends E> c),add(E e),addBefor(E e,Entry<E> entry)方法可以构造链表并在指定位置插入节点,为了便于理解,下面给出插入节点的示意图。

    addFirst(E e)

1 public void addFirst(E e) {
2     addBefore(e, header.next);
3 }

    addLast(E e)

1 public void addLast(E e) {
2     addBefore(e, header);
3 }

    看上面的示意图,结合addBefore(E e,Entry<E> entry)方法,很容易理解addFrist(E e)只需实现在header元素的下一个元素之前插入,即示意图中的一号之前。addLast(E e)只需在实现在header节点前(因为是循环链表,所以header的前一个节点就是链表的最后一个节点)插入节点(插入后在2号节点之后)。

    clear()

复制代码
 1 public void clear() {
 2 Entry<E> e = header.next;
 3 // e可以理解为一个移动的“指针”,因为是循环链表,所以回到header的时候说明已经没有节点了
 4 while (e != header) {
 5     // 保留e的下一个节点的引用
 6         Entry<E> next = e.next;
 7         // 接触节点e对前后节点的引用
 8         e.next = e.previous = null;
 9         // 将节点e的内容置空
10         e.element = null;
11         // 将e移动到下一个节点
12         e = next;
13 }
14 // 将header构造成一个循环链表,同构造方法构造一个空的LinkedList
15 header.next = header.previous = header;
16 // 修改size
17     size = 0;
18     modCount++;
19 }
复制代码

    上面代码中的注释已经足以解释这段代码的逻辑,需要注意的是提到的“指针”仅仅是概念上的类比,Java并不存在“指针”的概念,而只有引用,为了便于理解所以部分说明使用了“指针”。

    contains(Object o)

1 public boolean contains(Object o) {
2     return indexOf(o) != -1;
3 }

    仅仅只是判断o在链表中的索引。先看indexOf(Object o)方法。

复制代码
 1 public int indexOf(Object o) {
 2     int index = 0;
 3     if (o==null) {
 4         for (Entry e = header.next; e != header; e = e.next) {
 5             if (e.element==null)
 6                 return index;
 7             index++;
 8         }
 9     } else {
10         for (Entry e = header.next; e != header; e = e.next) {
11             if (o.equals(e.element))
12                 return index;
13             index++;
14         }
15     }
16     return -1;
17 }
复制代码

    indexOf(Object o)判断o链表中是否存在节点的element和o相等,若相等则返回该节点在链表中的索引位置,若不存在则放回-1。

    contains(Object o)方法通过判断indexOf(Object o)方法返回的值是否是-1来判断链表中是否包含对象o。

    element()

1 public E element() {
2     return getFirst();
3 }

    getFirst()

1 public E getFirst() {
2     if (size==0)
3         throw new NoSuchElementException();
4     return header.next.element;
5 }

    element()方法调用了getFirst()返回链表的第一个节点的元素。为什么要提供功能一样的两个方法,像是包装了一下名字?其实这只是为了在不同的上下文“语境”中能通过更贴切的方法名调用罢了。

    get(int index)

1 public E get(int index) {
2     return entry(index).element;
3 }

    get(int index)方法用于获得指定索引位置的节点的元素。它通过entry(int index)方法获取节点。entry(int index)方法遍历链表并获取节点,在上面有说明过,不再陈述。

    set(int index,E element)

1 public E set(int index, E element) {
2     Entry<E> e = entry(index);
3     E oldVal = e.element;
4     e.element = element;
5     return oldVal;
6 }

    先获取指定索引的节点,之后保留原来的元素,然后用element进行替换,之后返回原来的元素。

    getLast()

1 public E getLast()  {
2     if (size==0)
3         throw new NoSuchElementException();
4     return header.previous.element;
5 }

    getLast()方法和ge

以上是关于LinkedList源码分析的主要内容,如果未能解决你的问题,请参考以下文章

linkedList源码分析

LinkedList源代码深入剖析

JDK源码LinkedList源码分析

LinkedList源码分析

LinkedList源码分析

LinkedList源码分析--jdk1.8