2541 幂运算

Posted 神犇(shenben)

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了2541 幂运算相关的知识,希望对你有一定的参考价值。

2541 幂运算

 

 时间限制: 1 s
 空间限制: 128000 KB
 题目等级 : 钻石 Diamond
 
 
题目描述 Description

    从m开始,我们只需要6次运算就可以计算出m31:

 

    m2=m×m,m4=m2×m2,m8=m4×m4,m16=m8×m8,m32=m16×m16,m31=m32÷m。

 

    请你找出从m开始,计算mn的最少运算次数。在运算的每一步,都应该是m的正整数次方,换句话说,类似m-3是不允许出现的。

输入描述 Input Description

输入为一个正整数n

输出描述 Output Description

输出为一个整数,为从m开始,计算mn的最少运算次数。

样例输入 Sample Input

样例1
1

样例2
31

样例3
70

样例输出 Sample Output

样例1
0

样例2
6

样例3
8

数据范围及提示 Data Size & Hint

n(1<=n<=1000)

 

数据没有问题,已经出现过的n次方可以直接调用

分类标签 Tags 点此展开 

 
题解:

迭代加深搜索的含义:

就是dfs前,先规定好dfs的深度,如果到了这个深度还没有结果,就退出dfs,

没找到,在这个题目中深度就指的是计算的次数,实现规定好计算的次数,在这个次数内没有出现结果,就返回没找到,对于那种没有搜索边界的题目,可以这样做

因为这个题目没有说最多对计算多少次,那么如果对于一个结果一直dfs计算下去,不仅没有边界,而且计算的次数也不一定是最少次数。所以用迭代加深搜索。

 

这样,对于每次的搜索 我们限制最多能做几次运算
这样搜索的规模就大大减小
同样的维护已经得到的mi数组
数组的大小对应做了几次运算
加上几个剪枝:
如果mi中最大的<<(limit-k)都到不了n 搜索失败
生成新的mi的时候 尽量组合数大的 这样也可以减小规模

AC代码:

#include<cstdio>
#define max(a,b) a>b?a:b
using namespace std;
const int N=101;
int n,a[N];
bool dfs(int k,int limit){
    if(a[k]==n) return 1;
    if(k==limit) return 0;
    int maxx=0;
    for(int i=0;i<=k;i++) maxx=max(maxx,a[k]);
    /*剪枝,如果每次把指数*2,这是最大的增长方式,如果这样还是比n小,就退出吧*/
    if(maxx<<(limit-k)<n) return 0;
    for(int i=k;i>=0;i--){/*这里采用倒序循环可以加快速度,先选出比较大的数计算,可以加快扩展速度*/
        a[k+1]=a[i]+a[k];
        if(dfs(k+1,limit)) return 1;
        a[k+1]=a[k]-a[i];
        if(dfs(k+1,limit)) return 1;
    }
    return 0;
}
int find(){
    if(n==1)return 0;
    a[0]=1;
    for(int i=1;i<=20;i++) if(dfs(0,i)) return i;/*依次加深深度*/
}
int main(){
    scanf("%d",&n);
    printf("%d\n",find());
    return 0;
}

 

以上是关于2541 幂运算的主要内容,如果未能解决你的问题,请参考以下文章

2541 幂运算

codevs 2541 幂运算(迭代加深搜索)

迭代加深搜索 codevs 2541 幂运算

数论——快速幂,模运算及快速幂求逆元

Android中的数学幂运算

为 Scala 创建“**”幂运算符?