Elasticsearch Index API & Aggregations API & Query DSL
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Elasticsearch Index API & Aggregations API & Query DSL相关的知识,希望对你有一定的参考价值。
这篇小菜给大家演示和讲解一些Elasticsearch的API,如在工作中用到时,方便查阅。
一、Index API
创建索引库
curl -XPUT ‘http://127.0.0.1:9200/test_index/‘ -d ‘{ "settings" : { "index" : { "number_of_shards" : 3, "number_of_replicas" : 1 } }, "mappings" : { "type_test_01" : { "properties" : { "field1" : { "type" : "string"}, "field2" : { "type" : "string"} } }, "type_test_02" : { "properties" : { "field1" : { "type" : "string"}, "field2" : { "type" : "string"} } } } }‘
验证索引库是否存在
curl –XHEAD -i ‘http://127.0.0.1:9200/test_index?pretty‘
注: 这里加上的?pretty参数,是为了让输出的格式更好看。
查看索引库的mapping信息
curl –XGET -i ‘http://127.0.0.1:9200/test_index/_mapping?pretty‘
验证当前库type为article是否存在
curl -XHEAD -i ‘http://127.0.0.1:9200/test_index/article‘
查看test_index索引库type为type_test_01的mapping信息
curl –XGET -i ‘http://127.0.0.1:9200/test_index/_mapping/type_test_01/?pretty‘
测试索引分词器
curl -XGET ‘http://127.0.0.1:9200/_analyze?pretty‘ -d ‘ { "analyzer" : "standard", "text" : "this is a test" }‘
输出索引库的状态信息
curl ‘http://127.0.0.1:9200/test_index/_stats?pretty‘
输出索引库的分片相关信息
curl -XGET ‘http://127.0.0.1:9200/test_index/_segments?pretty‘
删除索引库
curl -XDELETE http://127.0.0.1:9200/logstash-nginxacclog-2016.09.20/
二、Count API
简易语法
curl -XGET ‘http://elasticsearch_server:port/索引库名称/_type(当前索引类型,没有可以不写)/_count
用例:
1、统计 logstash-nginxacclog-2016.10.09 索引库有多少条记录
curl -XGET ‘http://127.0.0.1:9200/logstash-nginxacclog-2016.10.09/_count‘
2、统计 logstash-nginxacclog-2016.10.09 索引库status为200的有多少条记录
curl -XGET ‘http://127.0.0.1:9200/logstash-nginxacclog-2016.10.09/_count?q=status:200‘
DSL 写法
curl -XGET ‘http://127.0.0.1:9200/logstash-nginxacclog-2016.10.09/_count‘ -d ‘ { "query": { "term":{"status":"200"}} }‘
三、Aggregations API (数据分析和统计)
注: 聚合相关的API只能对数值、日期 类型的字段做计算。
1、求平均数
业务场景: 统计访问日志中的平均响应时长
curl -XGET ‘http://127.0.0.1:9200/logstash-nginxacclog-2016.10.09/_search?pretty‘ -d ‘{ "query" : { "match_all" : {} }, "aggs" : { "avg_num" : { "avg" : { "field" : "responsetime" } } },"size":0 # 这里的 size:0 表示不输出匹配到数据,只输出聚合结果。 }‘ { "took" : 598, "timed_out" : false, "_shards" : { "total" : 5, "successful" : 5, "failed" : 0 }, "hits" : { "total" : 32523067, "max_score" : 0.0, "hits" : [ ] }, "aggregations" : { "avg_num" : { "value" : 0.0472613558675975 } } } # 得到平均响应时长为 0.0472613558675975 秒
2、求最大值
业务场景:获取访问日志中最长的响应时间
curl -XGET ‘http://127.0.0.1:9200/logstash-nginxacclog-2016.10.09/_search?pretty‘ -d ‘{ "query" : { "match_all" : {} }, "aggs" : { "max_num" : { "max" : { "field" : "responsetime" } } },"size":0 }‘ { "took" : 29813, "timed_out" : false, "_shards" : { "total" : 431, "successful" : 431, "failed" : 0 }, "hits" : { "total" : 476952009, "max_score" : 0.0, "hits" : [ ] }, "aggregations" : { "max_num" : { "value" : 65.576 } } } # 得到最大响应时长为 65.576 秒
3、求最小值
业务场景: 获取访问日志中最快的响应时间
curl -XGET ‘http://127.0.0.1:9200/logstash-nginxacclog-2016.10.09/_search?pretty‘ -d ‘{ "query" : { "match_all" : {} }, "aggs" : { "min_num" : { "min" : { "field" : "responsetime" } } },"size":0 }‘ { "took" : 2145, "timed_out" : false, "_shards" : { "total" : 431, "successful" : 431, "failed" : 0 }, "hits" : { "total" : 477156773, "max_score" : 0.0, "hits" : [ ] }, "aggregations" : { "min_num" : { "value" : 0.0 } } } # 看来最快的响应时间竟然是0,笔者通过查询日志发现,原来这些响应时间为0的请求是被nginx拒绝掉的。
4、数值求和
业务场景: 统计一天的访问日志中为响应请求总共输出了多少流量。
curl -XGET ‘http://127.0.0.1:9200/logstash-nginxacclog-2016.10.09/_search?pretty‘ -d ‘{ "query" : { "match_all" : {} }, "aggs" : { "sim_num" : { "sum" : { "field" : "size" } } },"size":0 }‘ { "took" : 1226, "timed_out" : false, "_shards" : { "total" : 5, "successful" : 5, "failed" : 0 }, "hits" : { "total" : 32523067, "max_score" : 0.0, "hits" : [ ] }, "aggregations" : { "sim_num" : { "value" : 6.9285945505E10 } } } # 这个数有点大,后面的E10 表示 6.9285945505 X 10^10 ,笔者算了下,大概 70GB 流量。
5、获取常用的数据统计指标
其中包括( 最大值、最小值、平均值、求和、个数 )
业务场景: 求访问日志中的 responsetime ( 最大值、最小值、平均值、求和、个数 )
curl -XGET ‘http://127.0.0.1:9200/logstash-nginxacclog-2016.10.09/_search?pretty‘ -d ‘{ "query" : { "match_all" : {} }, "aggs" : { "like_stats" : { "stats" : { "field" : "responsetime" } } },"size":0 }‘ { "took" : 2868, "timed_out" : false, "_shards" : { "total" : 431, "successful" : 431, "failed" : 0 }, "hits" : { "total" : 477797577, "max_score" : 0.0, "hits" : [ ] }, "aggregations" : { "like_stats" : { "count" : 469345191, "min" : 0.0, "max" : 65.576, "avg" : 0.06088492952649428, "sum" : 2.8576048877634E7 } } }
这个是上面统计方式的增强版,新增了几个统计数据
curl -XGET ‘http://127.0.0.1:9200/logstash-nginxacclog-2016.10.09/_search?pretty‘ -d ‘{ "query" : { "match_all" : {} }, "aggs" : { "like_stats" : { "extended_stats" : { "field" : "responsetime" } } },"size":0 }‘ { "took" : 2830, "timed_out" : false, "_shards" : { "total" : 431, "successful" : 431, "failed" : 0 }, "hits" : { "total" : 478145456, "max_score" : 0.0, "hits" : [ ] }, "aggregations" : { "like_stats" : { "count" : 469687072, "min" : 0.0, "max" : 65.576, "avg" : 0.06087745173159307, "sum" : 2.859335205463328E7, "sum_of_squares" : 1.3162790273264633E7, "variance" : 0.02431853151732958, "std_deviation" : 0.1559440012226491, "std_deviation_bounds" : { "upper" : 0.3727654541768913, "lower" : -0.2510105507137051 } } } } # 其中新增的三个返回结果分别是: # sum_of_squares 平方和 # variance 方差 # std_deviation 标准差
6、统计数据在某个区间所占的百分比
业务场景: 求出访问日志中响应时间的各个区间,所占的百分比
curl -XGET ‘http://127.0.0.1:9200/logstash-nginxacclog-2016.10.09/_search?pretty‘ -d ‘{ "query" : { "match_all" : {} }, "aggs" : { "outlier" : { "percentiles" : { "field" : "responsetime" } } },"size":0 }‘ { "took" : 60737, "timed_out" : false, "_shards" : { "total" : 431, "successful" : 431, "failed" : 0 }, "hits" : { "total" : 478287997, "max_score" : 0.0, "hits" : [ ] }, "aggregations" : { "outlier" : { "values" : { "1.0" : 0.0, "5.0" : 0.0, "25.0" : 0.02, "50.0" : 0.038999979789136247, "75.0" : 0.06247223731250421, "95.0" : 0.16479760590682113, "99.0" : 0.520510492464275 } } } } # values 对应的列为所占的百分比,右边则是对应的数据值。表示: # 响应时间小于或等于0的请求占 1% # 响应时间小于或等于0的请求占 5% # 响应时间小于或等于0.02的请求占 25% # 响应时间小于或等于0.038999979789136247的请求占 50% # 响应时间小于或等于0.06247223731250421的请求占 75% # 响应时间小于或等于0.16479760590682113的请求占 95% # 响应时间小于或等于0.520510492464275的请求占 99% # 还可以通过 percents 参数,自定义一些百分比区间,如 10%,30%,60%,90% 等。 # 注: 经笔者测试,这个方法只能对数值类型的字段进行统计,无法操作字符串类型的字段。 curl -XGET ‘http://127.0.0.1:9200/logstash-nginxacclog-2016.10.09/_search?pretty‘ -d ‘{ "query" : { "match_all" : {} }, "aggs" : { "outlier" : { "percentiles" : { "field" : "status", "percents":[5, 10, 20, 50, 99.9] } } },"size":0 }‘
7、求指定字段数值在各个区间所占的百分比
业务场景:求响应时间 0, 0.01, 0.1, 0.2 在整个日志文件中,分别所占的百分比。
curl -XGET ‘http://127.0.0.1:9200/logstash-nginxacclog-2016.10.09/_search?pretty‘ -d ‘{ "query" : { "match_all" : {} }, "aggs" : { "outlier" : { "percentile_ranks" : { "field" : "responsetime", "values":[0, 0.01, 0.1, 0.2] } } },"size":0 }‘ { "took" : 6950, "timed_out" : false, "_shards" : { "total" : 5, "successful" : 5, "failed" : 0 }, "hits" : { "total" : 32523067, "max_score" : 0.0, "hits" : [ ] }, "aggregations" : { "outlier" : { "values" : { "0.0" : 8.79897648675993, "0.01" : 17.90331319256336, "0.1" : 91.18297638776373, "0.2" : 98.22564774611764 } } } } # 响应时间小于或等于0的请求占 8.7% # 响应时间小于或等于0.01的请求占 17.9% # 响应时间小于或等于0.1的请求占 91.1% # 响应时间小于或等于0.2的请求占 98.2%
8、求该数值范围内有多少文档匹配
业务场景: 求访问日志中的响应时间为,0 ~ 0.02、0.02 ~ 0.1 、大于 0.1 这三个数值区间内,各有多少文档匹配。
"ranges":[{"to": 0.02}, {"from":0.02,"to":0.1},{"from":0.1}]
{"to": 0.02} 求响应时间 0 ~ 0.02 区间内的匹配文档数
{"from":0.02,"to":0.1} 求响应时间 0.02 ~ 0.1 区间内匹配的文档数
{"from":0.1} 求响应时间大于 0.1 匹配的文档数
curl -XGET ‘http://127.0.0.1:9200/logstash-nginxacclog-2016.10.09/_search?pretty‘ -d ‘{ "query" : { "match_all" : {} }, "aggs" : { "range_info" : { "range" : { "field" : "responsetime", "ranges":[{"to": 0.02}, {"from":0.02,"to":0.1},{"from":0.1}] } } },"size":0 }‘ { "took" : 474, "timed_out" : false, "_shards" : { "total" : 5, "successful" : 5, "failed" : 0 }, "hits" : { "total" : 32523067, "max_score" : 0.0, "hits" : [ ] }, "aggregations" : { "range_info" : { "buckets" : [ { "key" : "*-0.02", "to" : 0.02, "to_as_string" : "0.02", "doc_count" : 9093600 }, { "key" : "0.02-0.1", "from" : 0.02, "from_as_string" : "0.02", "to" : 0.1, "to_as_string" : "0.1", "doc_count" : 20547128 }, { "key" : "0.1-*", "from" : 0.1, "from_as_string" : "0.1", "doc_count" : 2879418 } ] } } } "aggregations" : { "range_info" : { "buckets" : [ { "key" : "*-0.02", "to" : 0.02, "to_as_string" : "0.02", "doc_count" : 9093600 } # 响应时间在 0 ~ 0.02 的文档数是 9093600 , { "key" : "0.02-0.1", "from" : 0.02, "from_as_string" : "0.02", "to" : 0.1, "to_as_string" : "0.1", "doc_count" : 20547128 } # 响应时间在 0.02 ~ 0.1 的文档数是 20547128 , { "key" : "0.1-*", "from" : 0.1, "from_as_string" : "0.1", "doc_count" : 2879418 } # 响应时间在大于 0.1 的文档数是 2879418 ] } }
9、求时间范围内有多少文档匹配
业务场景:求访问日志中,在 2016-10-09T01:00:00 之前的文档有多少。 和在 2016-10-09T02:00:00 之后的文档有多少。
curl -XGET ‘http://127.0.0.1:9200/logstash-nginxacclog-2016.10.09/_search?pretty‘ -d ‘{ "query" : { "match_all" : {} }, "aggs" : { "range_info" : { "date_range" : { "field" : "@timestamp", "ranges":[{"to": "2016-10-09T01:00:00"},{"from":"2016-10-09T02:00:00"}] } } },"size":0 }‘ { "took" : 432, "timed_out" : false, "_shards" : { "total" : 5, "successful" : 5, "failed" : 0 }, "hits" : { "total" : 32523067, "max_score" : 0.0, "hits" : [ ] }, "aggregations" : { "range_info" : { "buckets" : [ { "key" : "*-2016-10-09T01:00:00.000Z", "to" : 1.4759748E12, "to_as_string" : "2016-10-09T01:00:00.000Z", "doc_count" : 613460 }, # 在 2016-10-09T01:00:00 之前的文档数有 613460 { "key" : "2016-10-09T02:00:00.000Z-*", "from" : 1.4759784E12, "from_as_string" : "2016-10-09T02:00:00.000Z", "doc_count" : 31264881 } # 在 2016-10-09T02:00:00 之后的文档数有 31264881 ] } } }
10、聚合结果不依赖于查询结果集 "global":{}
curl -XGET ‘http://127.0.0.1:9200/logstash-nginxacclog-2016.10.09/_search?pretty‘ -d ‘{ "query" : { "term" : { "status" : "200" } }, "aggs" :{ "all_articles":{ "global":{}, "aggs":{ "sum_like": {"sum":{"field": "responsetime"}} } } },"size":0 }‘ { "took" : 1519, "timed_out" : false, "_shards" : { "total" : 5, "successful" : 5, "failed" : 0 }, "hits" : { "total" : 26686196, "max_score" : 0.0, "hits" : [ ] }, "aggregations" : { "all_articles" : { "doc_count" : 32523067, "sum_like" : { "value" : 1536946.1929722272 } } } } # 可以看到查询结果集hits total部分才匹配到 26686196 条记录。 而聚合的文档数则是 32523067 多于查询结果匹配到的文档。 # 聚合结果为 1536946.1929722272 # 我们再看看没有引用 "global":{} 参数的方式 curl -XGET ‘http://127.0.0.1:9200/logstash-nginxacclog-2016.10.09/_search?pretty‘ -d ‘{ "query" : { "term" : { "status" : "200" } }, "aggs":{ "sum_like": {"sum":{"field": "responsetime"}} },"size":0 }‘ { "took" : 1326, "timed_out" : false, "_shards" : { "total" : 5, "successful" : 5, "failed" : 0 }, "hits" : { "total" : 26686196, "max_score" : 0.0, "hits" : [ ] }, "aggregations" : { "sum_like" : { "value" : 1526710.3929916811 } } } # 聚合结果小于上诉的结果。 表示这次的聚合的值,是依赖于检索匹配到的文档。
11、分组聚合
用于统计指定字段在自定义的固定增长区间下,每个增长后的值,所匹配的文档数量。
curl -XGET ‘http://127.0.0.1:9200/logstash-nginxacclog-2016.10.09/_search?pretty‘ -d ‘{ "aggs" :{ "like_histogram":{ "histogram":{"field": "status", "interval": 200, "min_doc_count": 1} } },"size":0 }‘ # 对 status 字段操作,增长区间为 200 ,为了避免有的区间匹配为0所导致空数据,所以这里指定最小文档数为 1 "histogram":{"field": "status", "interval": 200, "min_doc_count": 1}
12、分组聚合-基于时间做分组
"date_histogram":{"field": "@timestamp", "interval": "1d","format": "yyyy-MM-dd",}
"field": "@timestamp" 指定记录时间的字段
"interval": "1d" 分组区间为每天. 1M 每月、1H 每小时、1m 每分钟
"format": "yyyy-MM-dd" 指定时间的输出格式
统计每天产生的日志数量
curl -XGET ‘http://127.0.0.1:9200/logstash-nginxacclog-*/_search?pretty‘ -d ‘{ "aggs" :{ "date_histogram_info":{ "date_histogram":{"field": "@timestamp", "interval": "1d","format": "yyyy-MM-dd", "min_doc_count": 1} } } }‘ "aggregations" : { "date_histogram_info" : { "buckets" : [ { "key_as_string" : "2016-09-27", "key" : 1474934400000, "doc_count" : 6895375 }, { "key_as_string" : "2016-09-28", "key" : 1475020800000, "doc_count" : 1255775 }, { "key_as_string" : "2016-09-29", "key" : 1475107200000, "doc_count" : 38512862 }, { "key_as_string" : "2016-09-30", "key" : 1475193600000, "doc_count" : 35314225 }, { "key_as_string" : "2016-10-01", "key" : 1475280000000, "doc_count" : 45358162 }, { "key_as_string" : "2016-10-02", "key" : 1475366400000, "doc_count" : 42058056 }, { "key_as_string" : "2016-10-03", "key" : 1475452800000, "doc_count" : 39945587 }, { "key_as_string" : "2016-10-04", "key" : 1475539200000, "doc_count" : 39509128 }, { "key_as_string" : "2016-10-05", "key" : 1475625600000, "doc_count" : 40506342 }, { "key_as_string" : "2016-10-06", "key" : 1475712000000, "doc_count" : 43303499 }, { "key_as_string" : "2016-10-07", "key" : 1475798400000, "doc_count" : 44234780 }, { "key_as_string" : "2016-10-08", "key" : 1475884800000, "doc_count" : 32880600 }, { "key_as_string" : "2016-10-09", "key" : 1475971200000, "doc_count" : 32523067 }, { "key_as_string" : "2016-10-10", "key" : 1476057600000, "doc_count" : 31454044 }, { "key_as_string" : "2016-10-11", "key" : 1476144000000, "doc_count" : 2018401 } ] } } } # 基于小时做分组 # 统计当天每小时产生的日志数量 curl -XGET ‘http://127.0.0.1:9200/logstash-nginxacclog-2016.10.09/_search?pretty‘ -d ‘{ "aggs" :{ "date_histogram_info":{ "date_histogram":{"field": "@timestamp", "interval": "1H","format": "yyyy-MM-dd-H", "min_doc_count": 1} } },"size":0 }‘ { "took" : 530, "timed_out" : false, "_shards" : { "total" : 5, "successful" : 5, "failed" : 0 }, "hits" : { "total" : 32523067, "max_score" : 0.0, "hits" : [ ] }, "aggregations" : { "date_histogram_info" : { "buckets" : [ { "key_as_string" : "2016-10-09-0", "key" : 1475971200000, "doc_count" : 613460 }, { "key_as_string" : "2016-10-09-1", "key" : 1475974800000, "doc_count" : 644726 }, { "key_as_string" : "2016-10-09-2", "key" : 1475978400000, "doc_count" : 687196 }, { "key_as_string" : "2016-10-09-3", "key" : 1475982000000, "doc_count" : 730831 }, { "key_as_string" : "2016-10-09-4", "key" : 1475985600000, "doc_count" : 1460320 }, { "key_as_string" : "2016-10-09-5", "key" : 1475989200000, "doc_count" : 1469098 }, { "key_as_string" : "2016-10-09-6", "key" : 1475992800000, "doc_count" : 1004399 }, { "key_as_string" : "2016-10-09-7", "key" : 1475996400000, "doc_count" : 962843 }, { "key_as_string" : "2016-10-09-8", "key" : 1476000000000, "doc_count" : 1232560 }, { "key_as_string" : "2016-10-09-9", "key" : 1476003600000, "doc_count" : 1809741 }, { "key_as_string" : "2016-10-09-10", "key" : 1476007200000, "doc_count" : 2802804 }, { "key_as_string" : "2016-10-09-11", "key" : 1476010800000, "doc_count" : 3941192 }, { "key_as_string" : "2016-10-09-12", "key" : 1476014400000, "doc_count" : 4631032 }, { "key_as_string" : "2016-10-09-13", "key" : 1476018000000, "doc_count" : 3651968 }, { "key_as_string" : "2016-10-09-14", "key" : 1476021600000, "doc_count" : 2079933 }, { "key_as_string" : "2016-10-09-15", "key" : 1476025200000, "doc_count" : 973578 }, { "key_as_string" : "2016-10-09-16", "key" : 1476028800000, "doc_count" : 517435 }, { "key_as_string" : "2016-10-09-17", "key" : 1476032400000, "doc_count" : 388382 }, { "key_as_string" : "2016-10-09-18", "key" : 1476036000000, "doc_count" : 361296 }, { "key_as_string" : "2016-10-09-19", "key" : 1476039600000, "doc_count" : 345926 }, { "key_as_string" : "2016-10-09-20", "key" : 1476043200000, "doc_count" : 342214 }, { "key_as_string" : "2016-10-09-21", "key" : 1476046800000, "doc_count" : 360897 }, { "key_as_string" : "2016-10-09-22", "key" : 1476050400000, "doc_count" : 714336 }, { "key_as_string" : "2016-10-09-23", "key" : 1476054000000, "doc_count" : 796900 } ] } } } # 可以看到当天 0 ~ 23 点每个时段产生的日志数量。 通过这个数据,我们是不是很容易就可以得到,业务的高峰时段呢?
四、Query DSL
curl -XGET ‘http://127.0.0.1:9200/search_test/article/_count?pretty‘ -d ‘{ "query" : { "term" : { "title" : "article" } } }‘
在 Query DSL 中有两种子句:
1、Leaf query clauses (简单叶子节点查询子句)
2、Compound query clauses (复合查询子句)
Query context & Filter context
在 Query context 查询上下文中 ,关注的是当前文档和查询子句的匹配度。 而在 Filter context 中关注的是当前文档是否匹配查询子句,不计算相似度分值。
{"match_all":{}} 匹配全部
{"match_all":{"boost":{"boost":1.2}}} 手动指定_score返回值
Term level queries
返回文档:在user字段的倒排索引中包含"kitty"的文档 (精确匹配)
{ "term":{"user":"kitty"} }
用例:
curl -XGET ‘http://169.254.135.217:9200/search_test/article/_count?pretty‘ -d ‘{ "query" : { "term" : { "user" : "kitty" } } }‘
Term level Range query (范围查询)
用例:
curl -XGET ‘http://127.0.0.1:9200/logstash-nginxacclog-2016.10.09/_search?pretty‘ -d ‘ { "query" : { "range" :{ "status" :{ "gt" : 200, "lte" : 500, "boost" : 2.0 } } } ,"size":1 }‘ # 这里的"size":1 表示只返回一条数据,类似SQL里面的limit。 最大指定10000 # 如果要返回更多的数据,则可以加上?scroll参数,如/_search?scroll=1m ,这里的1m 表示1分钟。 # 详细请参考: https://www.elastic.co/guide/en/elasticsearch/reference/current/common-options.html#time-units
Term level Exists query (存在查询)
用例:
curl -XGET ‘http://127.0.0.1:9200/logstash-nginxacclog-2016.10.09/_search?pretty‘ -d ‘ { "query": { "exists":{ "field":"status" } } }‘
Term level Prefix and Wildcard
前缀查询用例:
curl -XGET ‘http://127.0.0.1:9200/logstash-nginxacclog-2016.10.09/_search?pretty‘ -d ‘{ "query" :{ "prefix" :{"agent": "io" } } }‘
通配符查询用例:
curl -XGET ‘http://127.0.0.1:9200/logstash-nginxacclog-2016.10.09/_search?pretty‘ -d ‘{ "query" :{ "wildcard" :{"agent": "io*" } } }‘
Compound query : Bool Query
Bool Query 常用的三个分支:
1、Must 表示必须包含的字符串
2、Must not 表示需要过滤掉的条件
3、should 类似 or 条件,"minimum_should_match" 表示最少要匹配几个条件才通过。
假设我在should 里面定义了三个条件,并且把minimum_should_match 设置为 2 ,表示我这三个条件中,只要要有两个条件能被匹配才能通过。 如果minimum_should_match 改为 3 表示这三个条件需要同时匹配才通过。
"should" : [ { "term" : { "body" : "article" } }, { "term" : { "body" : "document" } }, { "term" : { "body" : "tuchao" } } ], "minimum_should_match" : 3,
用例:
在这里可以看到,我给should 加了一个它决定不可能匹配到的条件,body:‘tuchao‘ ,因为文档里面根本就没有这个字符串,然后我把 minimum_should_match 设置为 2 . 让它最小匹配2个条件就可以。 果然查询到了
接下来我把minimum_should_match 改为 3 让它最少要匹配三个条件,它显然做不到,就查不出来了
Request body search : Sort
本文出自 “突破舒适区” 博客,请务必保留此出处http://tchuairen.blog.51cto.com/3848118/1861864
以上是关于Elasticsearch Index API & Aggregations API & Query DSL的主要内容,如果未能解决你的问题,请参考以下文章
ElasticSearch DocumentAPIS Create Index API
ElasticSearch Index API && Mapping
Elasticsearch Java API : index创建删除 cluster管理