CodeForces 628D Magic Numbers (数位DP)
Posted dwtfukgv
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了CodeForces 628D Magic Numbers (数位DP)相关的知识,希望对你有一定的参考价值。
题意:求给定区间内偶数位置全是d并且是m的倍数的数的个数。
析:一开始以为是偶数有的是d,有的不是,然后还没有看到区间的长度相等,这个是十分重要的,要不然开不出数组。
dp[i][j] 表示前 i 位,取模m为 j。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <sstream> #include <stack> //#include <tr1/unordered_map> #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; //using namespace std :: tr1; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const LL LNF = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 2e3 + 5; const int mod = 1e9 + 7; const int N = 1e6 + 5; const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1}; const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1}; const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; inline LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); } int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline int Min(int a, int b){ return a < b ? a : b; } inline int Max(int a, int b){ return a > b ? a : b; } inline LL Min(LL a, LL b){ return a < b ? a : b; } inline LL Max(LL a, LL b){ return a > b ? a : b; } inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } LL dp[maxn][maxn]; int a[maxn]; char s[maxn], t[maxn]; int k, len; LL dfs(int pos, int val, bool ok){ if(pos == len) return val == 0; LL &ans = dp[pos][val]; if(!ok && ans >= 0) return ans; LL res = 0; int n = ok ? a[pos] : 9; for(int i = 0; i <= n; ++i){ if((pos&1) && i != m) continue; if(!(pos&1) && i == m) continue; res = (res + dfs(pos+1, (val*10+i)%k, ok && i == n)) % mod; } return ok ? res : ans = res; } LL solve(char *s){ for(len = 0; s[len]; ++len) a[len] = s[len] - ‘0‘; return dfs(0, 0, true); } bool judge(char *s){ int val = 0; for(int i = 0; s[i]; ++i){ if((i&1) && s[i] - ‘0‘ != m) return false; else if(!(i&1) && s[i] - ‘0‘ == m) return false; val = (val * 10 + s[i] - ‘0‘) % k; } return val == 0; } int main(){ while(scanf("%d %d", &k, &m) == 2){ memset(dp, -1, sizeof dp); scanf("%s %s", s, t); cout << (solve(t) - solve(s) + judge(s) + mod) % mod << endl; } return 0; }
以上是关于CodeForces 628D Magic Numbers (数位DP)的主要内容,如果未能解决你的问题,请参考以下文章
?????????????????????Codeforces Educational Codeforces Round 9 Magic Matrix