UVA766 Sum of powers(1到n的自然数幂和 伯努利数)
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了UVA766 Sum of powers(1到n的自然数幂和 伯努利数)相关的知识,希望对你有一定的参考价值。
自然数幂和:
(1)
伯努利数的递推式:
B0 = 1
(要满足(1)式,求出Bn后将B1改为1 /2)
参考:https://en.wikipedia.org/wiki/Bernoulli_number
http://blog.csdn.net/acdreamers/article/details/38929067
使用分数类,代入求解
#include<cstdio> #include<iostream> #include<cstdlib> #include<cstring> #include<string> #include<algorithm> #include<map> #include<queue> #include<vector> #include<cmath> #include<utility> using namespace std; typedef long long LL; const int N = 25, INF = 0x3F3F3F3F; LL gcd(LL a, LL b){ while(b){ LL t = a % b; a = b; b = t; } return a; } LL lcm(LL a, LL b){ return a / gcd(a, b) * b; } struct frac{ LL x, y; frac(){ x = 0; y = 1; } frac(LL x1, LL y1){ x = x1; y = y1; } frac operator*(const frac &tp)const{ LL a = x * tp.x; LL b = y * tp.y; LL d = gcd(a, b); a /= d; b /= d; if(a >= 0 && b < 0){ a = -a; b = -b; } return frac(a, b); } frac operator+(const frac &tp)const{ LL a = x * tp.y + tp.x * y; LL b = y * tp.y; LL d = gcd(a, b); a /= d; b /= d; if(a >= 0 && b < 0){ a = -a; b = -b; } return frac(a, b); } }ans[N][N], bo[N]; LL cm[N][N]; void init(){ memset(cm, 0, sizeof(cm)); cm[0][0] = 1; for(int i = 1; i < N; i++){ cm[i][0] = 1; for(int j = 1; j <= i; j++){ cm[i][j] = cm[i - 1][j - 1] + cm[i - 1][j]; } } bo[0].x = 1, bo[0].y = 1; for(int i = 1; i < N; i++){ bo[i].x = 0; bo[i].y = 1; for(int j = 0; j < i; j++){ bo[i] = bo[i] + frac(cm[i + 1][j], 1) * bo[j]; } bo[i] = bo[i] * frac(-1, i + 1); } bo[1].x = 1; bo[1].y = 2; for(int m = 0; m < N; m++){ for(int k = 0; k <= m; k++){ ans[m][m + 1 - k] = frac(cm[m + 1][k], 1) * bo[k] * frac(1, m + 1); } LL lc = ans[m][0].y; for(int k = 1; k <= m; k++){ lc = lcm(ans[m][k].y, lc); } for(int k = 0; k <= m + 1; k++){ LL d = lc / ans[m][k].y; ans[m][k].x *= d; ans[m][k].y *= d; } } } int main(){ init(); int t; cin >> t; while(t--){ int n; cin >>n; printf("%lld ", ans[n][0].y); for(int i = n + 1; i >= 0; i--){ if(i == 0){ printf("%lld\\n", ans[n][i].x); }else{ printf("%lld ", ans[n][i].x); } } if(t){ printf("\\n"); } } return 0; }
以上是关于UVA766 Sum of powers(1到n的自然数幂和 伯努利数)的主要内容,如果未能解决你的问题,请参考以下文章
CF622F The Sum of the k-th Powers (拉格朗日插值)
「CF622F」The Sum of the k-th Powers「拉格朗日插值」
[题解] CF622F The Sum of the k-th Powers
The Sum of the k-th Powers()Educational Codeforces Round 7F+拉格朗日插值法)