POJ 3352-Road Construction (图论-双边联通分支算法)

Posted aiterator

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了POJ 3352-Road Construction (图论-双边联通分支算法)相关的知识,希望对你有一定的参考价值。

题目大意:一个图,要求你加入最少的边,使得最后得到的图为一个边双连通分支。所谓的边双连通分支,即不存在桥的连通分支(题目保证数据中任意两点都联通)。

解题思路:先用tarjan算法进行缩点建立DAG图, 然后再进行寻找度为1的点有个数x, 那么需要添加的边即为(x+1)/ 2;

起初这样写, 一直WA,然后发现下面两个数据,发现并不能过。

#include <stdio.h>
#include <set>
#include <vector>
#include <string.h>
#include <algorithm>
using namespace std;

const int N = 1003;
vector<int>G[N];
vector<pair<int, int> >DAG;
int dfn[N], low[N], mk[N];
int tot;
int n, m;

void init()
{
    tot = 0;
    DAG.clear();
    for(int i=1; i<=n; ++ i)
    {
        mk[i] = 0;
        G[i].clear();
        dfn[i] = low[i] = -1;
    }
}

void tarjan(int u, int f)
{
    dfn[u] = low[u] = ++ tot;
    for(int i = 0; i < G[u].size(); ++ i)
    {
        int v = G[u][i];
        if(dfn[v] == -1)
        {
            tarjan(v, u);
            low[u] = min(low[u], low[v]);
            if(dfn[u] < low[v])
                DAG.push_back(make_pair(low[u], low[v]));
        }
        else if(v != f)
            low[u] = min(low[u], dfn[v]);
    }
}

void solve()
{
    init();
    for(int i=1; i<=m; ++ i)
    {
        int u, v;
        scanf("%d%d", &u, &v);
        G[u].push_back(v);
        G[v].push_back(u);
    }
    tarjan(1, -1);
    for(int i=0; i<DAG.size(); ++ i)
    {
        pair<int, int> S = DAG[i];
        mk[S.first] ++, mk[S.second] ++;
    }
    int ans = 0;
    for(int i=1; i<=n; ++ i)
    {
        if(mk[i] == 1)
            ans ++;
    }
    printf("%d\\n", (ans + 1) / 2);
}

int main()
{
    while(scanf("%d%d", &n, &m) != EOF)
        solve();
    return 0;
}
View Code

需要特别注意两组数据:

2 2

1 2

1 2

2 1

1 2

答案分别是:

0

1

代码如下:

#include <stdio.h>
#include <set>
#include <vector>
#include <string.h>
#include <algorithm>
using namespace std;

const int N = 1003;
vector<int>G[N];
int dfn[N], low[N], mk[N];
int tot;
int n, m;

void init()
{
    tot = 0;
    for(int i=1; i<=n; ++ i)
    {
        mk[i] = 0;
        G[i].clear();
        dfn[i] = low[i] = -1;
    }
}

void tarjan(int u, int f)
{
    dfn[u] = low[u] = ++ tot;
    for(int i = 0; i < G[u].size(); ++ i)
    {
        int v = G[u][i];
        if(dfn[v] == -1)
        {
            tarjan(v, u);
            low[u] = min(low[u], low[v]);
        }
        else if(v != f)
            low[u] = min(low[u], dfn[v]);
    }
}

void solve()
{
    init();
    for(int i=1; i<=m; ++ i)
    {
        int u, v;
        scanf("%d%d", &u, &v);
        G[u].push_back(v);
        G[v].push_back(u);
    }
    tarjan(1, -1);
    for(int i = 1; i <= n; ++ i)
    {
        for(int j = 0; j < G[i].size(); ++ j)
        {
            if(low[i] != low[G[i][j]])
                mk[low[i]] ++;
        }
    }
    int ans = 0;
    for(int i = 1; i <= n; ++ i)
        if(mk[i] == 1)
            ans ++;
    printf("%d\\n", (ans + 1) / 2);
}

int main()
{
    while(scanf("%d%d", &n, &m) != EOF)
        solve();
    return 0;
}
View Code

 

以上是关于POJ 3352-Road Construction (图论-双边联通分支算法)的主要内容,如果未能解决你的问题,请参考以下文章

POJ——T3352 Road Construction

POJ 3352 Road Construction

poj3352 road construction tarjan求双连通分量

POJ 3352 Road Construction(边—双连通分量)

poj 3352 : Road Construction ebcc

POJ3352 Road Construction Tarjan+边双连通