HDU 1159 Common Subsequence (LCS)

Posted dwtfukgv

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了HDU 1159 Common Subsequence (LCS)相关的知识,希望对你有一定的参考价值。

题意:给定两行字符串,求最长公共子序列。

析:dp[i][j] 表示第一串以 i 个结尾和第二个串以 j 个结尾,最长公共子序列,剩下的就简单了。

代码如下:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
//#include <tr1/unordered_map>
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std;
//using namespace std :: tr1;

typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const LL LNF = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 1e3 + 5;
const LL mod = 10000000000007;
const int N = 1e6 + 5;
const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1};
const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1};
const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
inline LL gcd(LL a, LL b){  return b == 0 ? a : gcd(b, a%b); }
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline int Min(int a, int b){ return a < b ? a : b; }
inline int Max(int a, int b){ return a > b ? a : b; }
inline LL Min(LL a, LL b){ return a < b ? a : b; }
inline LL Max(LL a, LL b){ return a > b ? a : b; }
inline bool is_in(int r, int c){
    return r >= 0 && r < n && c >= 0 && c < m;
}
int dp[maxn][maxn];
char s1[maxn], s2[maxn];

int main(){
    while(scanf("%s %s", s1+1, s2+1) == 2){
        n = strlen(s1+1);
        m = strlen(s2+1);
        memset(dp, 0, sizeof dp);
        int ans = 0;
        for(int i = 1; i <= n; ++i)
            for(int j = 1; j <= m; ++j)
                if(s1[i] == s2[j]) { dp[i][j] = dp[i-1][j-1] + 1;  ans = Max(ans, dp[i][j]); }
                else {  dp[i][j] = Max(dp[i-1][j], dp[i][j-1]);  ans = Max(ans, dp[i][j]); }

        printf("%d\n", ans);
    }
    return 0;
}

 

以上是关于HDU 1159 Common Subsequence (LCS)的主要内容,如果未能解决你的问题,请参考以下文章

HDU 1159 Common Subsequence

HDU 1159 Common Subsequence(裸LCS)

hdu 1159 Common Subsequence(最长公共子序列)

hdu-1159 Common Subsequence

题解报告:hdu 1159 Common Subsequence

hdu 1159 Common Subsequence(lcs)