并查集之团伙(codevs)

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了并查集之团伙(codevs)相关的知识,希望对你有一定的参考价值。

2597 团伙

 时间限制: 1 s
 空间限制: 128000 KB
 
 
题目描述

1920年的芝加哥,出现了一群强盗。如果两个强盗遇上了,那么他们要么是朋友,要么是敌人。而且有一点是肯定的,就是:

我朋友的朋友是我的朋友;

我敌人的敌人也是我的朋友。 

两个强盗是同一团伙的条件是当且仅当他们是朋友。现在给你一些关于强盗们的信息,问你最多有多少个强盗团伙。

输入描述

输入文件gangs.in的第一行是一个整数N(2<=N<=1000),表示强盗的个数(从1编号到N)。 第二行M(1<=M<=5000),表示关于强盗的信息条数。 以下M行,每行可能是F p q或是E p q(1<=p q<=N),F表示p和q是朋友,E表示p和q是敌人。输入数据保证不会产生信息的矛盾。

输出描述

输出文件gangs.out只有一行,表示最大可能的团伙数。

样例输入

6
4
E 1 4
F 3 5
F 4 6
E 1 2

样例输出

3

数据范围及提示

2<=N<=1000

1<=M<=5000

1<=p q<=N

 

技术分享
#include<cstdio>
int n,m,f[1005],x,y,x1,y1,ans=0,g[1002][1002];
bool z[1005];
char q,p;
int find(int x)
{
    if(x==f[x]) return f[x];//找到的是根,返回; 
    else {f[x]=find(f[x]);return f[x];}//如果不是根,将x的祖先赋值为根(缩短下一次找的路径); 
}
int main(){
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++) f[i]=i;
    for(int i=1;i<=m;i++)
    {
        scanf("%s%d%d",&q,&x,&y);//读入用%s,不能用%c(在这错了好长时间,可能是我水平低) ; 
        x1=find(x);
        y1=find(y);
        if(q==F) f[x1]=y1;
        else{
            g[x][0]++;g[x][g[x][0]]=y;
            g[y][0]++;g[y][g[y][0]]=x;//用二维数组存敌人关系 ; 
        }        
    }
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=g[i][0];j++)
        {
            x=g[i][j];
            if(j>1) {            //将i的敌人合并; 
                x1=find(g[i][j-1]);
                y1=find(f[x]);
                f[x1]=y1;
            }
            for(int k=1;k<=g[x][0];k++){//将i与j的敌人合并; 
                x1=find(i);
                y1=find(g[x][k]);
                f[x1]=y1;
            }
        }
    }
    for(int i=1;i<=n;i++)
    {
        x=find(f[i]);
        if(!z[x]) {ans++;z[x]=1;} //每个根只加一次; 
    }
    printf("%d",ans);
    return 0;
}
View Code

 

以上是关于并查集之团伙(codevs)的主要内容,如果未能解决你的问题,请参考以下文章

[并查集]团伙

团伙(并查集经典)

[并查集]校OJ-犯罪团伙

并查集BZOJ1370- [Baltic2003]Gang团伙

续并查集学习笔记——Gang团伙题解

P1892 [BOI2003]团伙 并查集