2016弱校联萌十一专场10.3 遗憾题合集

Posted DGUT_FLY

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了2016弱校联萌十一专场10.3 遗憾题合集相关的知识,希望对你有一定的参考价值。

http://acm-icpc.aitea.net/index.php?2016%2FPractice%2F%E6%A8%A1%E6%93%AC%E5%9C%B0%E5%8C%BA%E4%BA%88%E9%81%B8%2F%E8%AC%9B%E8%A9%95

C.We don\'t wanna work!

@siludose 你要的代码,做好了参考看

SB模拟,xjb模拟

#include <iostream>
#include <algorithm>
#include <stdio.h>
#include <cstring>
#include <queue>
#include <bitset>
#include <set>
#include <map>
using namespace std;
typedef long long LL;
const  int MAXN = 1e6+5;
struct Node
{
    string s;
    int time;
    int d;
} a[MAXN];
bool cmp(Node a, Node b)
{
    if(a.d == b.d)
        return a.time > b.time;
    return a.d > b.d;
}
struct cmp2
{
    bool operator()(const Node a, const Node b)const
    {
        if(a.d == b.d)
            return a.time > b.time;
        return a.d > b.d;
    }
};
struct cmp1
{
    bool operator()(const Node a, const Node b)const
    {
        if(a.d == b.d)
            return a.time < b.time;
        return a.d < b.d;
    }
};
set<Node,cmp1>se1;
set<Node,cmp2>se2;
map<string,Node>mp;
string s;
int main()
{
    int n, m;
    while(~scanf("%d",&n))
    {
        se1.clear();
        se2.clear();
        mp.clear();
        double tp = 1.0*n*0.2;
        int nn = (int)tp;
        int tn = n;
        for(int i=1; i<=tn; i++)
        {
            a[i].time = i;
            cin>>a[i].s>>a[i].d;
            mp[a[i].s] = a[i];
        }
        sort(a+1, a+1+tn, cmp);
        for(int i=1; i<=nn; i++)
            se1.insert(a[i]);
        for(int i=nn+1; i<=n; i++)
            se2.insert(a[i]);
        scanf("%d",&m);
        Node tmp;
        for(int i=tn+1; i<=tn+m; i++)
        {
            char op;
            cin>>op;
            if(op == \'-\')
            {
                cin>>s;
                tmp = mp[s];
                if(se1.erase(tmp)) nn--;
                se2.erase(tmp);
                if(nn>(int)(1.0*(n-1)*0.2))
                {
                    nn--;
                    tmp=*se1.begin();
                    se1.erase(tmp);
                    se2.insert(tmp);
                    cout<<tmp.s;
                    printf(" is not working now.\\n");
                }
                n--;
                if(nn<(int)(1.0*(n)*0.2))
                {
                    nn++;
                    tmp=*se2.begin();
                    se1.insert(tmp);
                    se2.erase(tmp);
                    cout<<tmp.s;
                    printf(" is working hard now.\\n");
                }
            }
            else///++
            {
                cin>>a[i].s>>a[i].d;
                a[i].time=i;
                mp[a[i].s]=a[i];
                //cout<<nn<<" "<<n<<endl;
                if(nn<(int)(1.0*(n+1)*0.2))///+0.2
                {
                    if(a[i].d>(*se2.begin()).d||a[i].d==(*se2.begin()).d&&a[i].time>(*se2.begin()).time)
                    {
                        se1.insert(a[i]);
                        cout<<a[i].s;
                        printf(" is working hard now.\\n");
                    }
                    else
                    {
                        tmp=*se2.begin();
                        se2.erase(tmp);
                        se1.insert(tmp);
                        se2.insert(a[i]);
                        cout<<a[i].s;
                        printf(" is not working now.\\n");
                        cout<<tmp.s;
                        printf(" is working hard now.\\n");
                    }
                    nn++;
                    //cout<<"nn"<<nn<<endl;
                }
                else///=0.2
                {
                    if(nn!=0)
                    {
                        tmp=*se1.begin();
                        if(a[i].d>tmp.d||a[i].d==tmp.d&&a[i].time>tmp.time)
                        {
                            se1.erase(tmp);
                            se1.insert(a[i]);
                            se2.insert(tmp);
                            cout<<a[i].s;
                            printf(" is working hard now.\\n");
                            cout<<tmp.s;
                            printf(" is not working now.\\n");
                        }
                        else
                        {
                            se2.insert(a[i]);
                           // se2.erase(tmp);
                            //se1.insert(tmp);
                            cout<<a[i].s;
                            printf(" is not working now.\\n");
                            //cout<<tmp.s;
                            //printf(" is working hard now.\\n");
                            ///
                        }
                    }
                    else
                    {
                        tmp=*se2.begin();
                        if((int)(1.0*(n+1)*0.2)>0)
                        {
                            if(a[i].d>tmp.d||a[i].d==tmp.d&&a[i].time>tmp.time)
                            {
                                se1.insert(a[i]);
                                cout<<a[i].s;
                                printf(" is working hard now.\\n");
                            }
                            else
                            {
                                se2.erase(tmp);
                                se2.insert(a[i]);
                                se1.insert(tmp);
                                cout<<a[i].s;
                                printf(" is not working now.\\n");
                                cout<<tmp.s;
                                printf(" is working hard now.\\n");
                            }
                        }
                        else
                        {
                            se2.insert(a[i]);
                            cout<<a[i].s;
                            printf(" is not working now.\\n");
                        }
                    }
                }
                n++;
            }///++
        }
    }
    return 0;
}
C

E.Similarity of Subtrees

真心佩服那帮用递归栈都能不爆栈的大神。。。不说了,伤心题

题目要求求出相似点对对数,相似指2对子树在不同且对应深度的结点都一样

可以看做可加的向量:(d0,d1, ... ,dn)其中dk是指深度为k的结点个数

父结点的向量是其本身(1,0,0, ... )+(0,所有子结点的向量之和)

不过要是直接向量上会o(n^2)滚粗

所以搞成hash值:d0*a^0+d1*a^1+d2*a^2+...

然后发现数字太大了,要模

a>100000就可以,没有哪个向量分量超过100000

对结果模的数m>1000000000,且必须是素数,感觉不设这么大会有hash冲突

可以map搞o(nlogn)或者hash_map搞o(n)

比赛中要注意要是这种数据都能爆栈,就用非递归+stack<int>硬杠

此题还可以bfs硬撑

#include <iostream>
#include <stdio.h>
#include <queue>
#include <string.h>
#include <vector>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const LL maxn=1e6+10,p=9901,mod=1e9+7;
vector<LL>G[maxn];
LL hash_v[maxn];
map<LL,LL>mp;
map<LL,LL>::iterator it;

void dfs(LL u)
{
    hash_v[u]=1;
    for(LL i=0; i<G[u].size(); i++)
    {
        LL v=G[u][i];
        dfs(v);
        hash_v[u]=(hash_v[u]+hash_v[v]*p)%mod;
    }
    mp[hash_v[u]]++;
}
int main()
{
   ///freopen("in.txt","r",stdin);
    LL n;
    LL u,v;
    while(scanf("%lld",&n)!=-1)
    {
        for(LL i=0; i<=n; i++)
        G[i].clear();
        mp.clear();
        for(LL i=1; i<n; i++)
        {
            scanf("%lld%lld",&u,&v);
            G[u].push_back(v);
        }
        dfs(1);
        LL ans=0;
        for(it=mp.begin(); it!=mp.end(); it++)
            ans+=it->second*(it->second-1)/2;
        printf("%lld\\n",ans);
    }
    return 0;
}
View Code

F.Escape from the Hell

题意:有人在悬崖上的1条绳子上,

有n罐能量饮料,喝的当天可以向上爬ai米,但是若没有爬到顶点,之后会下滑bi米,不喝则不会动

与此同时,有只蜘蛛第i天会不下滑地向上ci米,且上升到人身上就会致死

问人能否逃离,第几天逃离

题解:枚举最后1天喝哪种饮料,并从饮料集合去除

把其他饮料按照a(i)-b(i)的大小排序,负数的一定没用

设sdis(i)=sdis(i-1)+c(i) pdis(i)=pdis(i)+a(i)-b(i)

找到最小的x使得

任何i<x都是pdis(i)>sdis(i)并且pdis(x-1)+a(x)>=L,就是逃离成功

枚举过的那个元素不用再重复枚举

 

G.Shere the Ruins Presevation

题意:把点集以1条平行于y轴且不相切任何点的直线分成2个点集,然后用栅栏把2个点集围成最小面积

题解:感觉就是对整个点集以凸包的围法画边,把整条x轴按照点集在x上的分量离散化

把整个图形按顺序分割出三角形,再把那些三角形根据占用x轴的区间把面积写在树状数组

查询时相邻区间查询因为分割而少掉的面积,最大的那个减去总面积就是解

andrew\'s monotone chain?

 

J.compressed formula

题意:把不同ri字符串重复si次之后前后连接,表达式就按平常的计算顺序做,问字符串对应表达式结果模1000000007

题解:还是有规律的,从左向右遇乘则预存左乘数s1,右乘数s2归0;遇加/减则把当前2个乘数乘了往左边s0加,2个乘数s1,s2初始化,s1看前面符号设1或-1

字符串的排布

1.只有数字,像68,则就是68686868..... 这样循环,s2=s2*10^字符串长度+字符串对应数字,矩阵乘法可以归并大量重复运算

2.数字和乘,像68*233,则就是68*23368*23368*233..... 这样循环,s2=s2*10^左字符串长度+左字符串对应数字

s1=s1*s2*右左连接的字符串对应数字^(重复次数-1)*右字符串

有多个乘?把中间的乘数独立出来,跟上述乘数一样快速幂

3.数字、乘和加/减,像3*4+5*6+7*8,则就是3*4+5*6+7*83*4+5*6+7*83*4+5*6+7*8......

中间的乘数计算结果独立出来,第1个左乘法公式和最后1个右乘法公式独立出来,其他的都快速幂

 

K.non-redundent drive

一棵无向树,有一定加油量加油站n个,一定距离的路,越长耗油越多,不能在半路耗完油,但可以在到达加油站时油正好到0再加油,一条路最多走1次,问最多走过多少个点

把答案分割为2部分:从一个点出发耗油量,到达一个点的余油量,用树分治的话可以覆盖所有点对,故使用

至于边对有顺序之分的问题,可以正着遍历子树1次,反着遍历子树1次,每次记录dp[i],深度为i的点向上走时到根最多剩多少油

dp[i]序号从小到大,值是递增的,所以其实取最深的最大值是可以的。

如何得到这个位置?直接遍历dp数组,到最深的非-1值处向浅处刷,查询从上到下的路线时对每个点2分求答案

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <set>
#include <stack>
#include <map>
#include <vector>
#include <deque>
#include <string.h>
#include <bitset>
#define lson l,m,ls[rt]
#define rson m+1,r,rs[rt]
#define inf 1e9
using namespace std;
#define ll long long
const int maxn = 203000;
vector<pair<int,int> >G[maxn];
int done[maxn] , sum[maxn] , fN;
int max(int a,int b){return a>b?a:b;}
int min(int a,int b){return a<b?a:b;}
int dfs1(int u,int pa){
    sum[u] = 1;
    for(int i=0;i<G[u].size();i++){
        int v = G[u][i].first , w = G[u][i].second;
        if( done[v] || pa == v ) continue;
        sum[u] += dfs1(v,u);
    }
    return sum[u];
}
int dfs2(int u,int pa){
    for(int i=0;i<G[u].size();i++){
        int v = G[u][i].first , w = G[u][i].second;
        if( done[v] || pa == v ) continue;
        if( sum[v] * 2 >= fN ) return dfs2(v,u);
    }
    return u;
}

int ans;
int val[maxn];
int dp[maxn] , len;
//vector<pair<int,int> >p;

void dfs4(int u,int pa,int d,int co,int mi){
    mi = min( mi , co );
    co += val[u];

    int l = 1, r = len;
    while( l <= r ){
        int m=((l+r)>>1);
        if( dp[m] + mi >= 0 ){
            ans = max(ans,d + m);
            l = m+1;
        }else r = m-1;
    }

    for(int i=0;i<G[u].size();i++){
        int v = G[u][i].first , w = G[u][i].second;
        if( done[v] || pa == v ) continue;
        dfs4(v,u,d+1,co-w,mi);
    }
}
int maxlen;
void dfs3(int u,int pa,int d,int co,int mi){
    co += val[u];
    mi += val[u];
    if( mi >= 0 ){
        if( len < d ){
            for(int i=len+1;i<=d;i++)
                dp[i] = -inf;
            len = d;
        }
        dp[d] = max( dp[d] , co );
        maxlen = max(maxlen,d);
        mi = 0;
    }
    for(int i=0;i<G[u].size();i++){
        int v = G[u][i].first , w = G[u][i].second;
        if( done[v] || pa == v ) continue;
        dfs3(v,u,d+1,co-w,mi-w);
    }
}
void sol(int u){
    len = 1;
    dp[1] = val[u];
    int i,j;
    for(i=0;i<G[u].size();i++){
        int v = G[u][i].first , w = G[u][i].second;
        if( done[v] ) continue;
        dfs4(v,u,1,-w,-w);
        maxlen = -1;
        dfs3(v,u,2,val[u]-w,-w);
        for(j=maxlen-1;j>=0;j--)
            dp[j] = max(dp[j],dp[j+1]);
    }
    len = 1;
    dp[1] = val[u];
    for(i=G[u].size()-1;i>=0;i--){
        int v = G[u][i].first , w = G[u][i].second;
        if( done[v] ) continue;
        dfs4(v,u,1,-w,-w);
        maxlen = -1;
        dfs3(v,u,2,val[u]-w,-w);
        for(j=maxlen-1;j>=0;j--)
            dp[j] = max(dp[j],dp[j+1]);
    }
    ans = max( ans , len );
//    printf("u %d ans %d len %d\\n",u,ans,len);
}

void dfs(int u){
    fN = dfs1(u,-1);
    int r = dfs2(u,-1);
    sol(r);
    done[r] = 1;
    for(int i=0;i<G[r].size();i++){
        int v = G[r][i].first;
        if( !done[v] ) dfs(v);
    }
}
void solve(){
    ans = -1;
    memset(done,0,sizeof done);
    dfs(1);
}
int n;
int main()
{
    int i;
//    freopen("in.txt","r",stdin);
    while(scanf("%d",&n)!=EOF){
        for(i=1;i<=n;i++){
            scanf("%d",&val[i]);
            G[i].clear();
        }
        int a,b,c;
        for(i=0;i<n-1;i++){
            scanf("%d%d%d",&a,&b,&c);
            G[a].push_back(make_pair(b,c));
            G[b].push_back(make_pair(a,c));
        }
        solve();
        printf("%d\\n",ans);
    }
    return 0;
}
View Code

 

以上是关于2016弱校联萌十一专场10.3 遗憾题合集的主要内容,如果未能解决你的问题,请参考以下文章

2016弱校联萌十一专场10.5

弱校联萌十一大决战之背水一战C. Counting Pair

(2016弱校联盟十一专场10.3)DParentheses

西南弱校联萌

2016弱校联盟十一专场10.3---Similarity of Subtrees(深搜+hash映射)

(2016弱校联盟十一专场10.3) A.Best Matched Pair