支持向量机SVM

Posted dataAlpha

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了支持向量机SVM相关的知识,希望对你有一定的参考价值。

SVM(Support Vector Machine)有监督的机器学习方法,可以做分类也可以做回归。SVM把分类问题转化为寻找分类平面的问题,并通过最大化分类边界点距离分类平面的距离来实现分类。

有好几个模型,SVM基本,SVM对偶型,软间隔SVM,核方法,前两个有理论价值,后两个有实践价值。下图来自龙老师整理课件。

基本概念

线性SVM,线性可分的分类问题场景下的SVM。硬间隔。

线性不可分SVM,很难找到超平面进行分类场景下的SVM。软间隔。

非线性SVM,核函数(应用最广的一种技巧,核函数的选择十分重要)。

SVR(支持向量回归)。可以做回归。

SVC,用SVM进行分类。

一、硬间隔的支持向量机

假设函数:可以与LR类比,只是外面是套的符号函数,wx+b>0认为是正类,wx+b<0认为是负类。

损失函数:

从中挑选出最好的能分离黑点点和白点点的直线(分离边界),是硬间隔所要解决的问题。

直观上:我们认为处在两个样本正中间的位置的分离边界最好。理论上,对训练样本的局部扰动的容忍性最好,鲁棒性最好,泛化能力好。几何上,两类支持向量的中间垂面。

几何上:如下图所示,当考虑样本的误差增大时(认为所有样本的误差一样大),能完全分开圈圈和叉叉的直线减少。下图第一排等价于下图第二排。其实支持向量就是被下面那行胖胖的线穿过的点,只是这些点在高纬空间中对应着向量,所以叫支持向量。优化的目标就是找到一条最胖的线,刚好穿过我们的样本,同时又能把所有样本分离开,而那条胖胖线的中垂线,就是我们要找的直线,其实这样是考虑容错率,计算真实的样本测量错了,仍然能够分隔开;最胖的线左边和右边的距离就叫做间隔。间隔空间之内没有任何样本,即硬间隔。线的左边是一类样本,线的右边是另一类样本。

数学上:

那条中垂线:WtX+b=0,根据假设函数而来,既不为正,也不为负值。Wt为超平面法向量,法向量实际上就是与中垂线垂直的那个方向(想想b是标量,求解x,实际上能看出w与x就是垂直的,即内积,只是这里叫法向量)。b为原点到超平面的有向距离的放缩。w/|w|*x实际上就是内积,几何上就是投影(点到线的距离)。如果w和b同时放缩任意比例,原超平面不变。所以可以同时除以||w||。

圈圈到超平面的距离,是胖胖线的一半r。叉叉到超平面的距离也是胖胖线的一半,但是是负向 -r。任意一点到超平面的距离大于r时,yi等于+1,属于正类,任意一点到超平面的距离小于-r时,属于负类。而我们的目标就是最大化r 同时要满足,将两类进行分割,所以有如下约束条件,具体如下。

在此基础上,不妨另1/|W|=r,可以简化目标函数。其实损失函数就是对最优化的理解、对误差的理解、对数据的理解,根据这些而设计出来的。

而最终目标函数的求解,是一个在一次约束下,求二次最优的过程,即一个典型的凸二次规划问题,所以肯定是可以求解的,对偶方法可以求解。

综合以上SVM的推导过程如下:首先假设是线性可分的,由此我们有一定的几何判断和认识,基于该几何判断和认识下,通过逆推法,我们假设找到了这个最优的分离边界,应该满足哪些特点,包括需要知道点到面的几何距离的概念,变量又比较多,最终通过一个减少变量法,然后就得到了优化目标函数。

因为原问题为凸优化,所以原问题的凸优化问题与拉格朗日函数鞍点(又不是最大值又不是最小值,梯度是0的点),对偶函数(转化为对w,b求导)的凸优化问题的解一致。之所以还转化为对偶,就是为了好求。原问题是拉格朗日函数,在固定了w,b条件下,最大拉格朗日系数α条件下求解拉格朗日函数最小。对偶问题,是固定α,最小化w,b,这样通过求导可以算出w,b与α之间的关系,进而将目标函数转化为只有α,y,x。

根据KKT条件可知,需要满足yi*f(xi)=1,而满足这个条件的点,就是上文提到的支持向量点,f(x)是假设函数。

假设函数只与支持向量有关,更加体现了几何意义。SVM不受那种离分隔边界很远的极值点的影响,哪怕有个很远的叉叉点,对分离边界也不会有影响,而逻辑回归则会受影响

硬间隔的局限性:

不一定分类完全正确的超平面最好

样本数据本身线性不可分

二、软间隔的支持向量机

正因为由上面硬间隔支持向量机的局限性,才有了软间隔支持向量机,一般实际中都不会用硬间隔,因为一般都不可能完全线性可分。软间隔支持向量机考虑了在间隔中间的点,以及间隔外被错分类的点,这些点都是支持向量点,都要计算损失函数。而之前硬间隔是要找到完全分开的分隔边界。

 

上面的损失函数,除以C可以类比于逻辑回归的损失函数,左边是正则项,右边是hinge损失函数(当>1则没有任何损失,当<1则有损失)。C越小考虑的点越多。C越大是硬间隔。

与上文一样,根据拉格朗日,用α表示w,b,求解损失函数最小:

 

看KKT条件,得出以下结论:

三、 核函数

核函数处理线性不可分问题。核函数目的就是使得线性不可分的问题,用非线性的边界更好的分离开。

核函数即为下图的,把原来的x映射到高纬空间的,原来可能是10维*10维,映射到高维空间可能是100维*100维,但通过kernel技巧,两个高维的内积可以转化为低维x的内积,大大简化了计算。核函数就是为了映射到高维空间求内积而产生的,而我们上面的提到分离边界要是曲线,就必须是高维,而同时我们的损失函数就是内积的一个函数,所以这就完美的解决了上面的问题呢~把上面wx+b都可以转化为w+b。在原来样本做一个无穷维的空间映射,再做分类。下图为多项式核。

 

另一个应用广泛的核函数(径向基核函数,也称为高斯核)如下,可以映射到无限高维空间。

四、 LRSVM的异同

相同:都可以做分类;假设函数都是连续、线性的wx+b,只是一个在外面套了simoid函数,一个套了sign函数;正则项处理方式类似。

不同:SVM要考虑支持向量本身,而逻辑回归是不只考虑支持向量,而考虑所有点。损失函数不一样,一个叫对数几率损失函数,一个是hinge损失函数。支持向量机要用对偶法,逻辑回归没必要用对偶法。硬间隔的SVM,的损失函数是有约束条件下的凸优化问题(所以不能用梯度下降法,而要考虑对偶法等考虑约束的最优化求解方法),而逻辑回归是没有约束条件下的凸优化问题(所以可以用梯度下降法,走到的一定是最优点)。逻辑回归比较好解释,SVM没有那么好解释。

在线性边界情况,LR与SVM效果差不多,在非线性分离边界,SVM由于有核技巧,所以分得会更好点,但也有可能过拟合,核函数的选择时关键而且很复杂。

优点:可以解决小样本下机器学习问题;提高泛化性能,一般不会过拟合;可以解决文本分类、文字识别、图像分类等方面受欢迎;避免神经网络结构选择和局部极小值问题;不怕维度灾难。 

缺点:缺失值敏感;内存消耗大,难以解释。

Python

在Python中SVM包天生就带了正则,而LR需要自己添加正则,如果不加的化鲁棒性会差。

SVC中的参数,C就是损失函数里面那个C;class_weigh是类别的权重;kernel选择核函数;最大迭代次数-1指的是无穷大;probability是否需要输出概率形式;tol损失函数要收敛到一个合适的值,前后两个损失函数的差距小于tol就收敛。

 

上面说了这么多。。。那么SVM用通俗的语言再解释下到底是什么呢。。。看到有篇博客写的很不错呢,拷过来

http://www.cnblogs.com/jerrylead/archive/2011/03/18/1988419.html#2200002 

SVM的思想确实那么简单。它不再像logistic回归一样企图去拟合样本点(中间加了一层sigmoid函数变换),而是就在样本中去找分隔线,为了评判哪条分界线更好,引入了几何间隔最大化的目标。之后所有的推导都是去解决目标函数的最优化上了。在解决最优化的过程中,发现了w可以由特征向量内积来表示,进而发现了核函数,仅需要调整核函数就可以将特征进行低维到高维的变换,在低维上进行计算,实质结果表现在高维上。由于并不是所有的样本都可分,为了保证SVM的通用性,进行了软间隔的处理,导致的结果就是将优化问题变得更加复杂,然而惊奇的是松弛变量没有出现在最后的目标函数中。最后的优化求解问题,也被拉格朗日对偶和SMO算法化解,使SVM趋向于完美。

以上是关于支持向量机SVM的主要内容,如果未能解决你的问题,请参考以下文章

支持向量机原理

支持向量机(SVM)基本原理

0#07 SVM 支持向量机

支持向量机

11支持向量机SVM:线性可分支持向量机

支持向量机(SVM):超平面及最大间隔化支持向量机的数学模型软间隔与硬间隔线性可分支持向量机线性支持向量机非线性支持向量机核函数核函数选择SMO算法SVM vs LR优缺点