Apriori on MapReduce
Posted 莫扎特的代码
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Apriori on MapReduce相关的知识,希望对你有一定的参考价值。
Apiroi算法在Hadoop MapReduce上的实现
输入格式:
一行为一个Bucket
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 1 3 5 7 9 12 13 15 17 19 21 23 25 27 29 31 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 1 3 5 7 9 12 13 16 17 19 21 23 25 27 29 31 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 1 3 5 7 9 11 13 15 17 20 21 23 25 27 29 31 34 36 38 40 42 44 47 48 50 52 54 56 58 60 62 64 66 68 70 72 74 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 34 36 38 40 42 44 46 48 51 52 54 56 58 60 62 64 66 68 70 72 74 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 34 36 38 40 42 44 46 48 51 52 54 56 58 60 63 64 66 68 70 72 74 1 3 5 7 9 11 13 15 17 20 21 23 25 27 29 31 34 36 38 40 42 44 47 48 51 52 54 56 58 60 62 64 66 68 70 72 74 1 3 5 7 9 12 13 15 17 19 21 24 25 27 29 31 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 1 3 5 7 9 11 13 15 17 19 21 24 25 27 29 31 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 65 66 68 70 72 74 1 3 5 7 9 11 13 16 17 19 21 24 25 27 29 31 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 1 3 5 7 9 12 13 16 17 19 21 24 25 27 29 31 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 1 3 5 7 9 11 13 15 17 20 21 24 25 27 29 31 34 36 38 40 42 44 47 48 50 52 54 56 58 60 62 64 66 68 70 72 74 1 3 5 7 9 11 13 15 17 20 21 24 25 27 29 31 34 36 38 40 42 44 47 48 50 52 54 56 58 60 62 65 66 68 70 72 74 1 3 5 7 9 11 13 15 17 20 21 24 25 27 29 31 34 36 38 40 43 44 47 48 50 52 54 56 58 60 62 65 66 68 70 72 74
输出格式:
<item1,item2,...itemK, frequency>
25 2860 29 3181 3 2839 34 3040 36 3099 40 3170 48 3013 5 2971 52 3185 56 3021
代码:
1 package apriori; 2 3 import java.io.IOException; 4 import java.util.Iterator; 5 import java.util.StringTokenizer; 6 import java.util.List; 7 import java.util.ArrayList; 8 import java.util.Collections; 9 import java.util.Map; 10 import java.util.HashMap; 11 import java.io.*; 12 13 import org.apache.hadoop.conf.Configuration; 14 import org.apache.hadoop.conf.Configured; 15 import org.apache.hadoop.fs.Path; 16 import org.apache.hadoop.fs.FileSystem; 17 import org.apache.hadoop.io.Text; 18 import org.apache.hadoop.io.IntWritable; 19 import org.apache.hadoop.mapreduce.Job; 20 import org.apache.hadoop.mapreduce.Mapper; 21 import org.apache.hadoop.mapreduce.Mapper.Context; 22 import org.apache.hadoop.mapreduce.Reducer; 23 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; 24 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; 25 import org.apache.hadoop.mapreduce.lib.jobcontrol.JobControl; 26 import org.apache.hadoop.mapreduce.lib.jobcontrol.ControlledJob; 27 import org.apache.hadoop.util.Tool; 28 import org.apache.hadoop.util.ToolRunner; 29 30 class AprioriPass1Mapper extends Mapper<Object,Text,Text,IntWritable>{ 31 private final static IntWritable one = new IntWritable(1); 32 private Text number = new Text(); 33 34 //第一次pass的Mapper只要把每个item映射为1 35 public void map(Object key,Text value,Context context) throws IOException,InterruptedException{ 36 37 String[] ids = value.toString().split("[\\s\\t]+"); 38 for(int i = 0;i < ids.length;i++){ 39 context.write(new Text(ids[i]),one); 40 } 41 } 42 } 43 44 class AprioriReducer extends Reducer<Text,IntWritable,Text,IntWritable>{ 45 private IntWritable result = new IntWritable(); 46 47 //所有Pass的job共用一个reducer,即统计一种itemset的个数,并筛选除大于s的 48 public void reduce(Text key,Iterable<IntWritable> values,Context context) throws IOException,InterruptedException{ 49 int sum = 0; 50 51 int minSup = context.getConfiguration().getInt("minSup",5); 52 for(IntWritable val : values){ 53 sum += val.get(); 54 } 55 result.set(sum); 56 57 if(sum > minSup){ 58 context.write(key,result); 59 } 60 } 61 } 62 63 class AprioriPassKMapper extends Mapper<Object,Text,Text,IntWritable>{ 64 private final static IntWritable one = new IntWritable(1); 65 private Text item = new Text(); 66 67 private List< List<Integer> > prevItemsets = new ArrayList< List<Integer> >(); 68 private List< List<Integer> > candidateItemsets = new ArrayList< List<Integer> >(); 69 private Map<String,Boolean> candidateItemsetsMap = new HashMap<String,Boolean>(); 70 71 72 //第一个以后的pass使用该Mapper,在map函数执行前会执行setup来从k-1次pass的输出中构建候选itemsets,对应于apriori算法 73 @Override 74 public void setup(Context context) throws IOException, InterruptedException{ 75 int passNum = context.getConfiguration().getInt("passNum",2); 76 String prefix = context.getConfiguration().get("hdfsOutputDirPrefix",""); 77 String lastPass1 = context.getConfiguration().get("fs.default.name") + "/user/hadoop/chess-" + (passNum - 1) + "/part-r-00000"; 78 String lastPass = context.getConfiguration().get("fs.default.name") + prefix + (passNum - 1) + "/part-r-00000"; 79 80 try{ 81 Path path = new Path(lastPass); 82 FileSystem fs = FileSystem.get(context.getConfiguration()); 83 BufferedReader fis = new BufferedReader(new InputStreamReader(fs.open(path))); 84 String line = null; 85 86 while((line = fis.readLine()) != null){ 87 88 List<Integer> itemset = new ArrayList<Integer>(); 89 90 String itemsStr = line.split("[\\s\\t]+")[0]; 91 for(String itemStr : itemsStr.split(",")){ 92 itemset.add(Integer.parseInt(itemStr)); 93 } 94 95 prevItemsets.add(itemset); 96 } 97 }catch (Exception e){ 98 e.printStackTrace(); 99 } 100 101 //get candidate itemsets from the prev itemsets 102 candidateItemsets = getCandidateItemsets(prevItemsets,passNum - 1); 103 } 104 105 106 public void map(Object key,Text value,Context context) throws IOException,InterruptedException{ 107 String[] ids = value.toString().split("[\\s\\t]+"); 108 109 List<Integer> itemset = new ArrayList<Integer>(); 110 for(String id : ids){ 111 itemset.add(Integer.parseInt(id)); 112 } 113 114 //遍历所有候选集合 115 for(List<Integer> candidateItemset : candidateItemsets){ 116 //如果输入的一行中包含该候选集合,则映射1,这样来统计候选集合被包括的次数 117 //子集合,消耗掉了大部分时间 118 if(contains(candidateItemset,itemset)){ 119 String outputKey = ""; 120 for(int i = 0;i < candidateItemset.size();i++){ 121 outputKey += candidateItemset.get(i) + ","; 122 } 123 outputKey = outputKey.substring(0,outputKey.length() - 1); 124 context.write(new Text(outputKey),one); 125 } 126 } 127 } 128 129 //返回items是否是allItems的子集 130 private boolean contains(List<Integer> items,List<Integer> allItems){ 131 132 int i = 0; 133 int j = 0; 134 while(i < items.size() && j < allItems.size()){ 135 if(allItems.get(j) > items.get(i)){ 136 return false; 137 }else if(allItems.get(j) == items.get(i)){ 138 j++; 139 i++; 140 }else{ 141 j++; 142 } 143 } 144 145 if(i != items.size()){ 146 return false; 147 } 148 return true; 149 } 150 151 //获取所有候选集合,参考apriori算法 152 private List< List<Integer> > getCandidateItemsets(List< List<Integer> > prevItemsets, int passNum){ 153 154 List< List<Integer> > candidateItemsets = new ArrayList<List<Integer> >(); 155 156 //上次pass的输出中选取连个itemset构造大小为k + 1的候选集合 157 for(int i = 0;i < prevItemsets.size();i++){ 158 for(int j = i + 1;j < prevItemsets.size();j++){ 159 List<Integer> outerItems = prevItemsets.get(i); 160 List<Integer> innerItems = prevItemsets.get(j); 161 162 List<Integer> newItems = null; 163 if(passNum == 1){ 164 newItems = new ArrayList<Integer>(); 165 newItems.add(outerItems.get(0)); 166 newItems.add(innerItems.get(0)); 167 } 168 else{ 169 int nDifferent = 0; 170 int index = -1; 171 for(int k = 0; k < passNum && nDifferent < 2;k++){ 172 if(!innerItems.contains(outerItems.get(k))){ 173 nDifferent++; 174 index = k; 175 } 176 } 177 178 if(nDifferent == 1){ 179 //System.out.println("inner " + innerItems + " outer : " + outerItems); 180 newItems = new ArrayList<Integer>(); 181 newItems.addAll(innerItems); 182 newItems.add(outerItems.get(index)); 183 } 184 } 185 if(newItems == null){continue;} 186 187 Collections.sort(newItems); 188 189 //候选集合必须满足所有的子集都在上次pass的输出中,调用isCandidate进行检测,通过后加入到候选子集和列表 190 if(isCandidate(newItems,prevItemsets) && !candidateItemsets.contains(newItems)){ 191 candidateItemsets.add(newItems); 192 //System.out.println(newItems); 193 } 194 } 195 } 196 197 return candidateItemsets; 198 } 199 200 private boolean isCandidate(List<Integer> newItems,List< List<Integer> > prevItemsets){ 201 202 List<List<Integer>> subsets = getSubsets(newItems); 203 204 for(List<Integer> subset : subsets){ 205 if(!prevItemsets.contains(subset)){ 206 return false; 207 } 208 } 209 210 return true; 211 } 212 213 private List<List<Integer>> getSubsets(List<Integer> items){ 214 215 List<List<Integer>> subsets = new ArrayList<List<Integer>>(); 216 for(int i = 0;i < items.size();i++){ 217 List<Integer> subset = new ArrayList<Integer>(items); 218 subset.remove(i); 219 subsets.add(subset); 220 } 221 222 return subsets; 223 } 224 } 225 226 public class Apriori extends Configured implements Tool{ 227 228 public static int s; 229 public static int k; 230 231 public int run(String[] args)throws IOException,InterruptedException,ClassNotFoundException{ 232 long startTime = System.currentTimeMillis(); 233 234 String hdfsInputDir = args[0]; //从参数1中读取输入数据 235 String hdfsOutputDirPrefix = args[1]; //参数2为输出数据前缀,和第pass次组成输出目录 236 s = Integer.parseInt(args[2]); //阈值 237 k = Integer.parseInt(args[3]); //k次pass 238 239 //循环执行K次pass 240 for(int pass = 1; pass <= k;pass++){ 241 long passStartTime = System.currentTimeMillis(); 242 243 //配置执行该job 244 if(!runPassKMRJob(hdfsInputDir,hdfsOutputDirPrefix,pass)){ 245 return -1; 246 } 247 248 long passEndTime = System.currentTimeMillis(); 249 System.out.println("pass " + pass + " time : " + (passEndTime - passStartTime)); 250 } 251 252 long endTime = System.currentTimeMillis(); 253 System.out.println("total time : " + (endTime - startTime)); 254 255 return 0; 256 } 257 258 private static boolean runPassKMRJob(String hdfsInputDir,String hdfsOutputDirPrefix,int passNum) 259 throws IOException,InterruptedException,ClassNotFoundException{ 260 261 Configuration passNumMRConf = new Configuration(); 262 passNumMRConf.setInt("passNum",passNum); 263 passNumMRConf.set("hdfsOutputDirPrefix",hdfsOutputDirPrefix); 264 passNumMRConf.setInt("minSup",s); 265 266 Job passNumMRJob = new Job(passNumMRConf,"" + passNum); 267 passNumMRJob.setJarByClass(Apriori.class); 268 if(passNum == 1){ 269 //第一次pass的Mapper类特殊对待,不许要构造候选itemsets 270 passNumMRJob.setMapperClass(AprioriPass1Mapper.class); 271 } 272 else{ 273 //第一次之后的pass的Mapper类特殊对待,不许要构造候选itemsets 274 passNumMRJob.setMapperClass(AprioriPassKMapper.class); 275 } 276 passNumMRJob.setReducerClass(AprioriReducer.class); 277 passNumMRJob.setOutputKeyClass(Text.class); 278 passNumMRJob.setOutputValueClass(IntWritable.class); 279 280 FileInputFormat.addInputPath(passNumMRJob,new Path(hdfsInputDir)); 281 FileOutputFormat.setOutputPath(passNumMRJob,new Path(hdfsOutputDirPrefix + passNum)); 282 283 return passNumMRJob.waitForCompletion(true); 284 } 285 286 public static void main(String[] args) throws Exception{ 287 int exitCode = ToolRunner.run(new Apriori(),args); 288 System.exit(exitCode); 289 } 290 }
以上是关于Apriori on MapReduce的主要内容,如果未能解决你的问题,请参考以下文章