POJ 1141 Brackets Sequence (区间DP)
Posted dwtfukgv
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了POJ 1141 Brackets Sequence (区间DP)相关的知识,希望对你有一定的参考价值。
题意:给定一个括号序列,让你添加最少的括号,使得所有的括号都匹配。
析:首先用DP来把这个最少的找出来,然后再打印出解,dp[i][j]表示从 i 到 j 所要添加最少的数。
注意有空行的数据。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> //#include <tr1/unordered_map> #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; //using namespace std :: tr1; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const LL LNF = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 100 + 5; const int mod = 1e9 + 7; const int N = 1e6 + 5; const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1}; const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1}; const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; inline LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); } int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline int Min(int a, int b){ return a < b ? a : b; } inline int Max(int a, int b){ return a > b ? a : b; } inline LL Min(LL a, LL b){ return a < b ? a : b; } inline LL Max(LL a, LL b){ return a > b ? a : b; } inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } char s[maxn]; int dp[maxn][maxn]; bool judge(int i, int j){ if(s[i] == ‘(‘ && s[j] == ‘)‘) return true; if(s[i] == ‘[‘ && s[j] == ‘]‘) return true; return false; } void print(int i, int j){ if(i > j) return ; if(i == j){ if(s[i] == ‘(‘ || s[i] == ‘)‘) printf("()"); else printf("[]"); return ; } int ans = dp[i][j]; if(judge(i, j) && ans == dp[i+1][j-1]){ printf("%c", s[i]); print(i+1, j-1); printf("%c", s[j]); return ; } for(int k = i; k < j; ++k) if(ans == dp[i][k]+dp[k+1][j]){ print(i, k); print(k+1, j); return ; } } int main(){ while(gets(s) != NULL){ n = strlen(s); memset(dp, INF, sizeof dp); for(int i = 0; i < n; ++i) dp[i][i] = 1, dp[i+1][i] = 0; for(int i = n-2; i >= 0; --i) for(int j= i+1; j < n; ++j){ dp[i][j] = INF; if(judge(i, j)) dp[i][j] = dp[i+1][j-1]; for(int k = i; k < j; ++k) dp[i][j] = Min(dp[i][j], dp[i][k]+dp[k+1][j]); } print(0, n-1); printf("\n"); } return 0; }
以上是关于POJ 1141 Brackets Sequence (区间DP)的主要内容,如果未能解决你的问题,请参考以下文章