GraphX 的属性图

Posted 见贤思小齐,知足常乐呵

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了GraphX 的属性图相关的知识,希望对你有一定的参考价值。

package main.scala

import org.apache.spark.graphx.{Edge, Graph, VertexId}
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}

object graph_test {
  
  // define hadoop_home directory
  System.setProperty("hadoop.home.dir","E:/zhuangji/winutil/")

  def main(args:Array[String]):Unit={

    val conf=new SparkConf().setMaster("local[2]").setAppName("graph_test")
    val sc=new SparkContext(conf)

    // VertexRDD & EdgeRDD to build graph
    val users:RDD[(VertexId,(String,String))]=
      sc.parallelize(Array((3L,("rxin","student")),(7L,("jgonzal","postdoc")),
                          (5L,("franklin","prof")),(2L,("istoica","prof"))))
    val relationships:RDD[Edge[String]]=
      sc.parallelize(Array(Edge(3L,7L,"collab"),Edge(5L,3L,"advisor"),
                           Edge(2L,5L,"colleague"),Edge(5L,7L,"pi")))

    val defaultUser=("John Doe","Missing")

    val graph=Graph(users,relationships,defaultUser)

    // graph.vertices & graph.edges to query graph
    println(graph.vertices.filter{case (id,(name,pos))=>pos=="prof"}.count)

    println(graph.edges.filter{case Edge(s,d,r)=>s<d}.count)  // 两者
    println(graph.edges.filter(e=>e.srcId<e.dstId).count)  // 等价
    
    // 三元组视图 graph.triplets could also query a graph
    val facts:RDD[String]=
      graph.triplets.map(triplet=>
         triplet.srcAttr._1 + " is the " + triplet.attr + " of " + triplet.dstAttr._1)
    facts.collect.foreach(println(_))

  }

}

技术分享  

以上是关于GraphX 的属性图的主要内容,如果未能解决你的问题,请参考以下文章

大数据技术之_19_Spark学习_05_Spark GraphX 应用解析 + Spark GraphX 概述解析 + 计算模式 + Pregel API + 图算法参考代码 + PageRank(

Spark中文手册9:spark GraphX编程指南

Spark GraphX图计算代码实现,源码分析

Spark中GraphX图运算pregel详解

GraphX 实现K-Core

Spark GraphX图计算核心算子实战AggreagteMessage