LightOJ 1282 Leading and Trailing 数论

Posted 声声醉如兰

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了LightOJ 1282 Leading and Trailing 数论相关的知识,希望对你有一定的参考价值。

题目大意:求n^k的前三位数 和 后三位数。

题目思路:后三位数直接用快速幂取模就行了,前三位则有些小技巧:

对任意正数都有n=10^T(T可为小数),设T=x+y,则n=10^(x+y)=10^x*10^y,其中10^x为10的整倍数(x为整数确定数位长度),所以主要求出10^y的值。

T=log10(n^k)=klog10(n),可以调用fmod函数求其小数部分即y值。

 

技术分享
#include<iostream>
#include<algorithm>
#include<cstring>
#include<vector>
#include<stdio.h>
#include<queue>
#include<math.h>
#define INF 0x3f3f3f3f
#define MAX 1000005
#define Temp 1000000000

using namespace std;

long long Pow(long long n,long long m)//快速幂取模
{
    long long ans=1;
    while(m)
    {
        if(m&1)
        {
            ans=ans*n%1000;
        }
        n=(n*(n%1000))%1000;
        m/=2;
    }
    return ans;
}

int main()
{
    long long cnt=1,T;
    long long n,m;
    scanf("%lld",&T);
    while(T--)
    {
        scanf("%lld%lld",&n,&m);
        long long S=Pow(n,m);
        long long E=(pow(10.0,2.0+fmod((double)m*(log10(double(n))),1))+1e-8);//注意精度问题
        printf("Case %lld: %lld %03lld\n",cnt++,E,S);
    }
    return 0;
}
View Code

 

以上是关于LightOJ 1282 Leading and Trailing 数论的主要内容,如果未能解决你的问题,请参考以下文章

LightOJ - 1282 Leading and Trailing

LightOJ - 1282 -Leading and Trailing

LightOJ 1282 Leading and Trailing (数学)

快速幂 E - Leading and Trailing LightOJ - 1282

LightOJ - 1282 Leading and Trailing (数论)

LightOJ 1282 Leading and Trailing 数论