OTL使用指南
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了OTL使用指南相关的知识,希望对你有一定的参考价值。
1 OTL简介
OTL 是 Oracle, Odbcand DB2-CLI Template Library 的缩写,是一个C++编译中操控关系数据库的模板库,它目前几乎支持当前所有的各种主流数据库,例如Oracle, MS SQL Server, Sybase, Informix, mysql, DB2, Interbase /Firebird, PostgreSQL, SQLite, SAP/DB, TimesTen, MS ACCESS等等。
OTL中直接操作Oracle主要是通过Oracle提供的OCI接口进行,操作DB2数据库则是通过CLI接口进行,至于MS的数据库和其它一些数据库,OTL只提供了ODBC的操作方式。当然Oracle和DB2也可以由OTL间接使用ODBC的方式进行操纵。
在MS Windows and Unix 平台下,OTL目前支持的数据库版本主要有:Oracle 7 (直接使用 OCI7), Oracle 8 (直接使用 OCI8), Oracle 8i (直接使用OCI8i), Oracle 9i (直接使用OCI9i), Oracle 10g (直接使用OCI10g), DB2 (直接使用DB2 CLI), ODBC 3.x ,ODBC 2.5。目前OTL的最新版本为4.0,参见http://otl.sourceforge.net/,下载地址http://otl.sourceforge.net/otlv4_h.zip。
2 编译OTL
OTL是一个集成库,它包含了一个模板流框架(template stream framework)以及适配OCI7, OCI8, OCI8i, OCI9i, OCI10g, ODBC 2.5, ODBC 3.x, DB2 CLI和Informix CLI的适配器(OTL-adapters)。编译时需要使用相应的宏定义向编译器指明底层数据库API的类型。例如,如果底层使用ORACLE10g的API,则需要使用宏定义”#defineOTL_ORA10G”。
另外,也可以使用相应的宏定义控制编译器对OTL的编译。 例如,如果需要和ACE库一起编译可以使用宏定义”#defineOTL_ACE”, 如果需要OTL为所分配并处理的字符串以空字符结尾成为C风格字符串则可以使用宏定义”#define OTL_ADD_NULL_TERMINATOR_TO_STRING_SIZE”等。
所有的相关宏请参见http://otl.sourceforge.net/otl3_compile.htm。
3 基本使用
OTL的一般使用步骤包括:
(1) 使用宏指明底层数据库API类型和控制编译器对OTL的编译。例如:
#define OTL_ORA9I // Compile OTL 4.0/OCI9i
#define OTL_UNICODE //Enable Unicode OTL for OCI9i
(2) 创建otl_connect对象,该对象一般为全局共享的。
(3) 调用otl_connect的静态方法otl_initialize()初始化OTL环境。
(4) 调用otl_connect的rlogon()方法连接数据库。
(5) 创建otl_stream()对象,该对象一般为局部的。
(6) 调用otl_stream的open()方法打开SQL进行解析。
(7) 使用otl_stream的<<操作符绑定SQL中的变量。
(8) 使用otl_stream的>>操作符读取返回结果。
(9) 调用otl_connect的logoff()方法从数据库断开。
下面将通过一个较为全面的示例说明使用OTL连接数据库、创建表和存储过程、调用存储过程、查询记录以及插入记录、从数据库断开的具体代码实现。
#include <stdio.h> #include <string.h> #include <iostream> #include <vector>
#define OTL_ORA9I // Compile OTL 4.0/OCI9i //#define OTL_UNICODE // Enable Unicode OTL for OCI9i #include "otlv4.h" // include the OTL 4.0 header file
using namespace std;
/** *连接数据库 */ int OTLConnect (const char* pszConnStr, otl_connect& db) { try { otl_connect::otl_initialize(); // initialize OCI environment db.rlogon(pszConnStr); db.auto_commit_off ( ); printf ( "CONNECT: OK!\n" ); } catch(otl_exception& p) { // intercept OTL exceptions printf ( "Connect Error: (%s) (%s) (%s)\n",p.msg, p.stm_text, p.var_info ); return -1; } return 0; }
/** *从数据库断开 */ int OTLDisconnect (otl_connect& db) { db.commit ( ); db.logoff();
printf ( "DISCONNECT: OK!\n" ); return 0; }
/** *创建数据库表和存储过程 */ int OTLExec ( otl_connect& db) { try { int nCnt = 0; char strSql[] = "SELECT count(0) FROM user_tables " " WHERE table_name = ‘TEST_FTP‘ ";
otl_stream otlCur (1, (const char*)strSql, db ); otlCur >> nCnt;
if ( nCnt == 0 ) { char strDDL[] = "create table TEST_FTP " "( " " AREA_ID VARCHAR2(100) not null, " " FTP_FILE_NAME VARCHAR2(100) not null, " " FTP_TIME VARCHAR2(14), " " FTP_BEGIN_TIME VARCHAR2(14), " " FTP_END_TIME VARCHAR2(14), " " FTP_MOD_TIME date, " " FTP_SIZE NUMBER(8), " " FTP_SOURCE_PATH VARCHAR2(100), " " FTP_LOCAL_PATH VARCHAR2(100), " " FTP_RESULT VARCHAR2(4), " " FTP_REDO VARCHAR2(1) )";
otl_cursor::direct_exec ( db, (const char*)strDDL ); }
char strSqlProc[] = "SELECT count(0) from user_objects " " WHERE object_type = ‘PROCEDURE‘ and object_name = ‘PR_REMOVE_FTP‘ "; otl_stream otlCurProc (1, (const char*)strSqlProc, db ); otlCurProc >> nCnt;
if ( nCnt == 0 ) { char strProc[] = "CREATE OR REPLACE procedure pr_remove_ftp " " ( area in varchar2, out_flag out varchar ) " "AS " "strtmp varchar2(32); " "BEGIN " " strtmp := area||‘%‘; " " DELETE FROM TEST_FTP where area_id LIKE strtmp; " " out_flag := ‘OK‘; " "END; ";
otl_cursor::direct_exec ( db, (const char*)strProc ); }
} catch(otl_exception& p) { // intercept OTL exceptions printf ( "EXECUTE Error: (%s) (%s) (%s)\n",p.msg, p.stm_text, p.var_info ); } return 0; }
/** *调用存储过程 */ int OTLProcedure (otl_connect& db ) { try {
char szData[64], szData1[64], szData2[64], szData3[64]; int nSize = 0; char strSql[] = " BEGIN " " pr_remove_ftp ( :area<char[100],in>, :out<char[100],out> ); " " END; "; otl_stream otlCur (1, (const char*)strSql, db ); otlCur.set_commit ( 0 );
strcpy ( szData, "AREA" ); memset ( szData1, 0, sizeof(szData1) ); memset ( szData2, 0, sizeof(szData2) ); memset ( szData3, 0, sizeof(szData3) );
otlCur << szData; otlCur >> szData1;
printf ( "PROCEDURE: %s!\n", szData1 ); } catch(otl_exception& p) { // intercept OTL exceptions printf ( "PROCEDURE Error: (%s) (%s) (%s)\n",p.msg, p.stm_text, p.var_info ); } return 0; }
/** *查询记录 */ int OTLSelect (otl_connect& db) { try { char szData[64], szData1[64], szData2[64], szData3[64], szRedo[2]; int nSize; char strSql[] = " SELECT area_id, ftp_time, ftp_file_name, " " to_char(ftp_mod_time, ‘YYYY-MM-DD HH24:MI:SS‘), ftp_size " " FROM TEST_FTP " " WHERE ftp_redo = :ftp_redo<char[2]>" ; otl_stream otlCur (1, (const char*)strSql, db );
strcpy ( szRedo, "Y" ); otlCur << szRedo; while ( !otlCur.eof() ) { memset ( szData, 0, sizeof(szData) ); otlCur >> szData; otlCur >> szData1; otlCur >> szData2; otlCur >> szData3; otlCur >> nSize; printf ( "SELECT: (%s %s %s %s %d)\n", szData, szData1, szData2, szData3, nSize ); } } catch(otl_exception& p) { // intercept OTL exceptions printf ( "Select Error: (%s) (%s) (%s)\n",p.msg, p.stm_text, p.var_info ); } return 0; }
/** *插入记录 */ int OTLInsert (otl_connect& db) { try { char szData[64], szData1[64], szData2[9], szData3[64], szRedo[2]; int nSize; char strSql[] = " INSERT into TEST_FTP " " ( area_id, ftp_file_name, ftp_time, ftp_mod_time, ftp_size, ftp_redo )" " VALUES ( :area_id<char[100]>, " " :ftp_file_name<char[100]>, " " to_char(sysdate,‘YYYYMMDDHH24MISS‘), " " to_date(:ftp_mod_time<char[20]>,‘YYYYMMDD‘), " " :ftp_size<int>, " " :ftp_redo<char[2]> ) "; otl_stream otlCur (1, (const char*)strSql, db );
otlCur.set_commit ( 0 );
for ( int i = 1; i < 10; i ++ ) { sprintf ( szData, "AREA_%d", i ); sprintf ( szData1, "FILE_NAME_%d", i ); if ( i < 5 ) { sprintf ( szData2, "20070415" ); strcpy ( szRedo, "Y" ); } else { sprintf ( szData2, "20070416" ); strcpy ( szRedo, "N" ); }
memset ( szData3, 0, sizeof(szData3) ); nSize = i * 100;
otlCur << szData << szData1 << szData2 << nSize << szRedo; }
printf ( "INSERT: OK!\n" ); } catch(otl_exception& p) { // intercept OTL exceptions printf ( "INSERT Error: (%s) (%s) (%s)\n",p.msg, p.stm_text, p.var_info ); } return 0; }
/** *主函数 */ int main ( int argc, char *argv[] ) { otl_connect db; char szConn[64];
if ( argc >= 2 ) strcpy ( szConn, argv[1] ); else { printf ( "otltest conn_str" ); return -1; }
if ( OTLConnect ( szConn, db ) < 0 ) return 0; OTLExec ( db ); OTLProcedure ( db ); OTLInsert ( db ); OTLSelect ( db ); OTLDisconnect ( db );
return 0; } |
4 OTL流的概念
OTL设计者认为,任何SQL语句、PL/SQL块或存储过程调用都被输入和输出变量特征化。例如:
l 一个SELECT语句在其WHERE子句中拥有标量的输入变量,而在其SELECT子句则定义了输出的列,如果SELECT语句返回的是多行记录则输出列是个向量参数。
l 一个INSERT和UPDATE语句需要将数据写入表中,它们拥有输入参数。另外,一个DELETE语句由于需要指明删除记录的类型,同样拥有输入。工业强度的数据库服务器通常也支持批量操作,例如批量的查询、更新、删除和插入,因此INSERT/UPDATE/DELETE语句的参数在批量操作的情况下也可能是向量。
l 一个存储过程可能含有输入和(或)输出参数。通常存储过程的参数是标量,但是也有特例,例如返回的是引用游标(Oracle)或者记录集(MS SQL SERVER或者Sybase)。
l 一个PL/SQL块可能含有输入和(或)输出参数,这些参数可能是标量也可能是向量。
图4-1 OTL的流
因此,任何的SQL或者其程序上的扩展在交互过程中都可以如图4-1所示看作拥有输入和输出的黑盒。OTL通过将数据流和SQL的概念联合起来,用otl_stream类表达这种抽象。
由于SQL语句可能以批量的方式执行,otl_stream是一个缓冲流。它拥有两个独立的缓冲区:输入和输出。输入缓冲区由所有集中到一起的输入参数组成,输出缓冲区则由所有集中到一起的输出变量组成。
OTL流和C++的缓冲流很相似。一个SQL语句或存储过程调用被当作一个普通的缓冲流被打开。OTL流的操作逻辑和C++流操作逻辑基本相同,但是OTL流的输出和输出缓冲区可能重叠。
OTL流拥有flush()方法在输入缓冲区写满的时候将其自动刷新,也含有一系列的<<和>>运算符来读和写不同数据类型的对象。它最重要的优点是为任何类型的SQL语句和存储过程调用提供了统一的接口。应用开发者能够通过熟悉少量的语法和函数名称像使用C++流一样来使用OTL流。
在OTL流的内部拥有一个小型的解析器来解析所声明的绑定变量以及绑定变量的数据类型。因此,免去了使用特殊的绑定函数来绑定已声明的C/C++主机变量(hostvariables)。由于所有必须的缓冲区在OTL流中会自动创建,因此OTL仅仅需要被打开来进行读和写相应的数值。
OTL流接口要求使用OTL异常。OTL流操作都能可能抛掷otl_exception异常。因此为了拦截异常并阻止程序异常终止,必须使用try/catch块来包裹OTL流的使用代码。
OTL流的实现otl_stream具有较高的自动化功能,当OTL流的所有的输入变量被定义好(也就是输入缓冲区被填满),它会触发OTL流中的黑盒来执行。在黑盒执行的过程中输出缓冲区被填充。在执行完成后,输出缓冲区中的值能够从OTL流中被读取。如果执行的是一个SELECT语句并且返回多于输出缓冲区大小的行,那么在输出缓冲区的内容被读取后,OTL会自动读取下一批行记录到输出缓冲区。
5 主要类及方法说明
5-1 OTL主要类说明
类名 |
说明 |
otl_connect |
负责创建和处理连接对象以及事务管理。 |
otl_stream |
OTL流概念(参见第4小节)的具体实现。任何具有输入输出的SQL语句,匿名的PL/SQL块或者存储过程能够使用otl_stream类进行C++编程。 一般传统的数据库API拥有绑定主机变量到SQL语句中占位符的函数。因此,开发者需要在程序中声明host array,解析SQL语句,调用绑定函数,填充输入变量,执行SQL语句,读输出变量等。这些操作结束后又继续填充输入变量,执行SQL语句,读输出变量。 以上的所有事情能够在otl_stream中全部自动完成。otl_stream在保证性能的情况下提供了完全自动的与数据库的交互。 otl_stream的性能主要被缓冲区大小arr_size一个参数控制。缓冲区大小定义了插入表的逻辑行以及与数据库一次往反交互(one round-trip to the database)过程中从表或视图中查询的逻辑行。 |
otl_exception |
可能代表数据库错误也可能代表OTL自身的错误。OTL函数如果在使用底层的数据库API时返回非0的错误码,则会产生otl_exception类型的异常。 |
4.1otl_stream的主要方法
5-2 类otl_stream的主要方法说明
4.2 otl_connect的主要方法
4-3 类otl_connect的主要方法说明
主要方法 |
说明 |
static int otl_initialize( const int threaded_mode=0 ); |
初始化OTL环境。需要在程序最开始连接数据库之前调用一次。 参数threaded_mode指明程序是否运行在多线程环境,注意由于OTL并没有使用同步锁或者临界段,线程安全并不能够自动得到保证。 |
otl_connect( const char* connect_str, const int auto_commit=0 ); |
构造函数。 参数connect_str为连接字符串,OTL/OCIx风格的连接字符串为: “USER/PASSWORD”(本地Oracle连接) “USER/[email protected]_ALLAS”(通过SQL*Net进行的远程连接) 参数auto_commit指明是否每一个在连接中执行的SQL语句都会自动提交。如果需要自动提交则为1,默认情况下为0表示不需要自动提交。注意该auto_commit参数和otl_stream的自动提交没有任何关系。 |
void rlogon( const char* connect_str, const int auto_commit=0 ); |
连接数据库。参数同构造函数。 |
void logoff(void); |
断开数据库连接。 |
static int otl_terminate(void); |
终止Oracle 8i/9i的OCI环境。需要在程序最后的数据库连接进行关闭后调用一次。该方法仅仅是OCI Terminate()调用的包装。通常在多线程环境中,为了终止主线程的控制,该方法需要被调用使得进程能够从OCI客户端的共享内存中脱离以及做其他事情。 |
void cancel(void);// OTL/OCI8/8i/9i only |
取消连接对象或者数据库会话中的正在执行或者活动的操作或数据库调用。 |
同步或异步的方式提交事务。 |
|
void rollback(void); |
回滚事务。 |
设置otl_connect对象的auto_commit标志。 |
|
void set_stream_pool_size( const int max_size =otl_max_default_pool_size ); |
如果使用了流缓冲池,则该方法重新分配被默认的流缓冲池和之前的set_stream_pool_size()调用分配的所有资源。 |
void set_character_set( const int char_set=SQLCS_IMPLICIT ); |
如果使用了UNICODE,则该方法设置默认或国家的字符集: SQLCS_IMPLICIT为数据库默认字符集。 SQLCS_NCHAR为数据库国家的字符集。 |
otl_connect& operator<<(const char* str); |
发送字符串到otl_connect对象。如果该otl_connect对象还没有连接到数据库则字符串为"userid/[email protected]"格式的连接字符串,它使得otl_connect对象能够连接数据库。如果该otl_connect对象已经连接到数据库则字符串为静态SQL语句,该语句被马上执行。 |
otl_connect& operator<<=(const char* str); |
发送字符串到otl_connect对象。otl_connect对象将保存该字符串并被下一个>>操作符使用。该字符串是一个拥有占位符并且能够发送到otl_stream对象的SQL语句。 |
otl_connect& operator>>(otl_stream& s); |
发送之前使用操作符<<=保存的SQL语句到otl_stream对象。它使得该SQL语句被otl_stream打开。 注意如果并没有被>>=操作符保存的字符串,则字符串"*** INVALID COMMAND ***"被发送到otl_stream,最终会将导致解析错误,抛掷otl_exception异常。 |
long direct_exec( const char *sqlstm, int ignore_error ); |
直接执行静态的SQL语句,返回处理的行数。 |
void syntax_check( const char *sqlstm ); |
解析静态的SQL语句,如果出现SQL错误将抛掷otl_exception异常。 |
void server_attach(const char* tnsname=0, |
附加到Oralcle。 |
从Oracle分离。 |
|
const char* username, const char* password, const int auto_commit=0, const int session_mode=OCI_DEFAULT ); |
开始Oracle8会话。 |
结束Oracle8会话。 |
6 SQL的变量绑定和常量SQL
6.1 SQL的变量绑定
OTL拥有一个小型的解析器,负责在流的内部动态的为SQL语句、PL/SQL 块或存储过程调用中声明的绑定变量分配空间。OTL将Oracle传统的使用命名符号作为占位符的变量绑定机制进行了扩展,增加了数据类型说明,例如:
INSERT INTO my_table2values(:employee_id<int>,:supervisor_name<char[32]>)
OTL占位符中的支持的数据类型如表6-1所示。
表6-1 OTL占位符中支持的数据类型
bigint |
64-bit signed integer, for binding with BIGINT table columns (or stored procedure parameters) in MS SQL Server, DB2, MySQL, PostrgeSQL, etc. ODBC, and DB2 CLI support this kind bind variables natively, so does OTL. OCIs do not have native support for 64-bit integers, so OTL has to emulate it via string (<char[XXX]>) bind variables internally and does string-to-bigint and bigint-to-string conversion. |
blob |
for Oracle 8/9; BLOB |
char[length] |
null terminated string; length is database dependent; for Oracle in [3,32545]; for ODBC it depends on the database backend and the ODBC driver; for DB2-CLI >2. In Unicode OTL, this type of bind variable declaration means a null terminated Unicode character string (two bytes per character). Thelength field of this declarator needs to include an extra byte / Unicode character, in order to accomodate the null terminator itself (for example char[11] can be used in binding with a VARCHAR(9) column), unless #define OTL_ADD_NULL_TERMINATOR_TO_STRING_SIZE is enabled. |
charz |
Same as char[] for OTL_ORA7, OTL_ORA8, OTL_ORA8I, OTL_ORA9I, OTL_ORA10G. Should be used only when PL/SQL tables of type CHAR(XXX) are used. charz is actually a workaround for the following Oracle error: PLS-00418: array bind type must match PL/SQL table row type.Normally, the internal OCI datatype that is used to bind VARCHAR2/CHAR table columns / scalar PL/SQL procedure parameters works fine, except for PL/SQL tables of CHAR(XXX). PL/SQL engine does not like what OTL tries to bind with a PL/SQL table of CHAR(XXX).charz[] should be used instead of char[] in cases like that. |
clob |
for Oracle 8/9: CLOB, NCLOB |
db2date |
for DB2 DATEs; should be used in the binding of a placeholder with a DB2 DATE column in case of both |
db2time |
for DB2 TIMEs; should be used in the binding of a placeholder with a DB2 TIME column in case of both OTL/DB2-CLI and OTL/ODBC for DB2; requiresotl_datetime as a data container. See example91 for more detail. |
double |
8-byte floating point number |
float |
4-byte floating point number |
int |
32-bit signed int |
ltz_timestamp |
Oracle 9i TIMESTAMP WITH LOCAL TIME ZONE, in a combination with #define OTL_ORA_TIMESTAMP, and otl_datetime |
nchar[length] |
Same as char[] + otl_connect::set_character_set(SQLCS_NCHAR) for Oracle 8i/9i/10g only, under #define OTL_UNICODE., or #define OTL_ORA_UTF8. nchar[] is required only when both VARCHAR2/CHAR and NVARCHAR2/NCHAR need to be declared in the same SQL statement, or PL/SQL block. |
nclob |
Same as clob + otl_connect::set_character_set(SQLCS_NCHAR) for Oracle 8i/9i/10g only, under #define OTL_UNICODE, or #defineOTL_ORA_UTF8. nclob is required only when both CLOB and NCLOB need to be declared in the same SQL statement, or PL/SQL block. |
raw[length] |
|
raw_long |
|
short |
short int (16-bit signed integer) |
timestamp |
MS SQL Server/Sybase DATETIME, DB2 TIMESTAMP, Oracle DATE, Oracle 9i TIMESTAMP (when #defineOTL_ORA_TIMESTAMP is enabled) ; it requires TIMESTAMP_STRUCT (OTL/ODBC, OTL/DB2-CLI), orotl_datetime (ODBC, DB2-CLI, and OCIx). OTL/DB2-CLI and OTL/ODBC for DB2; requiresotl_datetime as a data container. See example91 for more detail |
tz_timestamp |
Oracle 9i TIMESTAMP WITH TIME ZONE, in a combination with #define OTL_ORA_TIMESTAMP, and otl_datetime |
unsigned |
unsigned int (32-bit unsigned integer) |
varchar_long |
for Oracle 7: LONG; for Oracle 8/9: LONG; for ODBC: SQL_LONGVARCHAR; for DB2: CLOB |
为了区分PL/SQL 块或存储过程中的输入和输出变量,OTL引入了以下限定词:
l in – 输入变量
l out – 输出变量
l inout – 输入输出变量
其用法如下的Oracle示例代码片断所示。
BEGIN |
6.2 常量SQL
如果SQL语句 、PL/SQL 块或存储过程调用中不含有任何绑定变量,则可以称之为静态的。OTL包含了静态方法执行静态语句,例如:
otl_cursor::direct_exec (db, // connect object "create table test_tab(f1 number, f2 varchar2(30))" ); // create table
otl_cursor::direct_exec (db, // connect object "drop table test_tab", // SQL statement or PL/SQL block otl_exception::disabled // disable OTL exceptions, // in other words, ignore any // database error ); // drop table
|
otl_cursor是OTL4.0的一个internalclass。OTL虽然并不推荐使用低级别的类,但是otl_cursor的direct_exec()方法是一个特例。该方法的返回值可能为:
l -1, 如果otl_exception异常被禁止使用(第二个参数被设置成otl_exception::disabled),并且底层的API返回了错误。
l >=0, 如果成功执行SQL命令,在执行INSERT、DELETE或UPDATE语句时实际返回的是已处理行数。
7迭代器
7.1 OTL流的读迭代器
OTL提供了模板类otl_stream_read_iterator来扩展OTL流接口以支持迭代,该模板类提供了类似JDBC的传统getter接口,可以使用名称访问返回列。
以下是使用读迭代器的示例代码。
#include <iostream> using namespace std; #include <stdio.h> //#define OTL_ORA7 // Compile OTL 4.0/OCI7 |
输出结果:
f1=8, f2=Name8 f1=9, f2=Name9 f1=10, f2=Name10 f1=11, f2=Name11 f1=12, f2=Name12 f1=13, f2=Name13 f1=14, f2=Name14 f1=15, f2=Name15 f1=16, f2=Name16 f1=4, f2=Name4 f1=5, f2=Name5 f1=6, f2=Name6 f1=7, f2=Name7 f1=8, f2=Name8
7.2 STL兼容的迭代器
OTL将泛型编程和Oracle紧密结合以构筑小容量的、可靠的、高性能并且容易维护的C++数据库应用,为此分别提供了两个STL兼容的迭代器:otl_output_iterator<T>和otl_input_iterator<T,Distance>。
otl_output_iterator<T>是一种输出迭代器(Output Iterator),它将类型为T的对象输出到otl_stream。其构造函数为otl_output_iterator(otl_stream&s)。
otl_input_iterator<T,Distance>是一种输入迭代器(InputIterator),它从otl_stream中读出将类型为T的对象,另外一个模板参数Distance为otl_input_iterator的指针偏移类型。当流的末尾到达时,otl_input_iterator会得到一个特殊的值即past-the-end迭代器。
otl_input_iterator的构造函数分别为otl_output_iterator(otl_stream&s)和otl_output_iterator(), 其中无参数的默认构造函数otl_output_iterator()将创建一个past-the-end迭代器用以指示otl_input_iterator到达流尾。
以下是使用STL兼容迭代器的示例代码。
#include <iostream> #include <vector> #include <iterator> #include <string> #define OTL_ORA8 // Compile OTL 4.0/OCI8 #define OTL_STL // Turn on STL features #define OTL_ANSI_CPP // Turn on ANSI C++ typecasts #include <otlv4.h> // include the OTL 4.0 header file using namespace std; otl_connect db; // connect object // row container class class row{ public: int f1; string f2; // default constructor row(){f1=0;} // destructor ~row(){} // copy constructor row(const row& row) { f1=row.f1; f2=row.f2; } // assignment operator row& operator=(const row& row) { f1=row.f1; f2=row.f2; return *this; } }; // redefined operator>> for reading row& from otl_stream otl_stream& operator>>(otl_stream& s, row& row) { s>>row.f1>>row.f2; return s; } // redefined operator<< for writing row& into otl_stream otl_stream& operator<<(otl_stream& s, const row& row) { s<<row.f1<<row.f2; return s; } // redefined operator<< writing row& into ostream ostream& operator<<(ostream& s, const row& row) { s<<"f1="<<row.f1<<", f2="<<row.f2; return s; } void insert() // insert rows into table { otl_stream o(50, // buffer size "insert into test_tab values(:f1<int>,:f2<char[31]>)", // SQL statement db // connect object ); row r; // single row buffer vector<row> vo; // vector of rows // populate the vector for(int i=1;i<=100;++i){ r.f1=i; r.f2="NameXXX"; vo.push_back(r); } cout<<"vo.size="<<vo.size()<<endl; // insert vector into table copy(vo.begin(), vo.end(), otl_output_iterator<row>(o) ); } void select() { otl_stream i(50, // buffer size "select * from test_tab where f1>=:f<int> and f1<=:f*2", // SELECT statement db // connect object ); // create select stream vector<row> v; // vector of rows // assigning :f = 8 i<<8; // SELECT automatically executes when all input variables are // assigned. First portion of out rows is fetched to the buffer // copy all rows to be fetched into the vector copy(otl_input_iterator<row,ptrdiff_t>(i), otl_input_iterator<row,ptrdiff_t>(), back_inserter(v)); cout<<"Size="<<v.size()<<endl; // send the vector to cout copy(v.begin(), v.end(), ostream_iterator<row>(cout, "\n")); // clean up the vector v.erase(v.begin(),v.end()); i<<4; // assigning :f = 4 // SELECT automatically executes when all input variables are // assigned. First portion of out rows is fetched to the buffer // copy all rows to be fetched to the vector copy(otl_input_iterator<row,ptrdiff_t>(i), otl_input_iterator<row,ptrdiff_t>(), back_inserter(v)); cout<<"Size="<<v.size()<<endl; // send the vector to cout copy(v.begin(), v.end(), ostream_iterator<row>(cout, "\n")); } int main() { otl_connect::otl_initialize(); // initialize OCI environment try{ db.rlogon("scott/tiger"); // connect to Oracle otl_cursor::direct_exec ( db, "drop table test_tab", otl_exception::disabled // disable OTL exceptions ); // drop table otl_cursor::direct_exec ( db, "create table test_tab(f1 number, f2 varchar2(30))" ); // create table insert(); // insert records into table select(); // select records from table } catch(otl_exception& p){ // intercept OTL exceptions cerr<<p.msg<<endl; // print out error message cerr<<p.stm_text<<endl; // print out SQL that caused the error cerr<<p.var_info<<endl; // print out the variable that caused the error } db.logoff(); // disconnect from Oracle return 0; }
|
输出结果:
f1=8, f2=Name8
f1=9, f2=Name9
f1=10, f2=Name10
f1=11, f2=Name11
f1=12, f2=Name12
f1=13, f2=Name13
f1=14, f2=Name14
f1=15, f2=Name15
f1=16, f2=Name16
f1=4, f2=Name4
f1=5, f2=Name5
f1=6, f2=Name6
f1=7, f2=Name7
f1=8, f2=Name8
8 资源池
8.1 连接缓冲池
对于Oracle数据库API,OTL的otl_connect类提供了server_attach()、server_detached()、session_begin()、session_end()四个方法(见4.2小节),它们可以联合使用以创建类似连接缓冲池机制。使用session_begin()比直接使用rlogon()快大约50到100倍。
以下是联合使用otl_connect的以上四个方法创建连接缓冲池机制的示例代码。
#include <iostream> using namespace std;
#include <stdio.h> #define OTL_ORA8 // Compile OTL 4.0/OCI8 #include <otlv4.h> // include the OTL 4.0 header file
otl_connect db; // connect object
void insert() // insert rows into table { otl_stream o(50, // buffer size "insert into test_tab values(:f1<float>,:f2<char[31]>)", // SQL statement db // connect object ); char tmp[32];
for(int i=1;i<=100;++i){ sprintf(tmp,"Name%d",i); o<<(float)i<<tmp; } }
void select() { otl_stream i(50, // buffer size "select * from test_tab where f1>=:f<int> and f1<=:f*2", // SELECT statement db // connect object ); // create select stream
float f1; char f2[31];
i<<4; // assigning :f = 4 // SELECT automatically executes when all input variables are // assigned. First portion of output rows is fetched to the buffer
while(!i.eof()){ // while not end-of-data i>>f1>>f2; cout<<"f1="<<f1<<", f2="<<f2<<endl; }
}
int main() { otl_connect::otl_initialize(); // initialize OCI environment try{
db.rlogon("scott/tiger"); // connect to Oracle
( db, "drop table test_tab", otl_exception::disabled // disable OTL exceptions ); // drop table
( db, "create table test_tab(f1 number, f2 varchar2(30))" ); // create table
insert(); // insert records into table
db.logoff(); // disconnect from Oracle
db.server_attach(); // attach to the local Oracle server // In order to connect to a remote server, // a TNS alias needs to be specified
for(int i=1;i<=100;++i){ cout<<"Session begin ==> "<<i<<endl; db.session_begin("scott","tiger"); // begin session; this function is much faster // than rlogon() and should be used (see the Oracle // manuals for more detail) in high-speed processing // systems, possibly with thousands of users. // this technique can be used instead of traditional // connection pooling.
select(); // select records from table
cout<<"Session end ==> "<<i<<endl; db.session_end(); // end session }
db.server_detach();// detach from the Oracle server } catch(otl_exception& p){ // intercept OTL exceptions cerr<<p.msg<<endl; // print out error message cerr<<p.stm_text<<endl; // print out SQL that caused the error cerr<<p.var_info<<endl; // print out the variable that caused the error }
db.logoff(); // make sure that the program gets disconnected from Oracle
return 0;
}
|
输出结果:
Session begin ==> XXX
f1=4, f2=Name4
f1=5, f2=Name5
f1=6, f2=Name6
f1=7, f2=Name7
f1=8, f2=Name8
Session end ==> XXX
8.2 OTL流缓冲池
流缓冲池是OTL的一个新机制,当otl_stream实例关闭时,otl_stream变量实例将被保存到流缓冲池中,使得程序能够继续重用。otl_stream的每次实例化将触发数据库后台对OTL流中SQL语句的重新解析,这是相对耗时的操作,而流缓冲池机制将减少这方面的耗时并简化编码技术。
缓冲池中的流可以是局部变量也可以是分配在堆上的动态变量。流之间的相似型和流缓冲区大小以及SQL语句文本有关,拥有相同缓冲区大小和SQL语句文本的流将保存在缓冲池中相同的桶中如图8-1所示。由于流缓冲池的底层使用STL的map和vector实现,因此使用时应该用”#defineOTL_STL”向编译器指明。
图8-1 OTL的流缓冲池
以下是采用流缓冲池机制的示例代码。
#include <iostream> // Uncomment the line below when OCI7 is used with OTL |
输出结果:
===================> Iteration: 1 I1==> f1=2, f2=Name2 I1==> f1=3, f2=Name3 I1==> f1=4, f2=Name4 I2==> f1=3, f2=Name3 I2==> f1=4, f2=Name4 I2==> f1=5, f2=Name5 I2==> f1=6, f2=Name6 ===================> Iteration: 2 I1==> f1=2, f2=Name2 I1==> f1=3, f2=Name3 I1==> f1=4, f2=Name4 I2==> f1=3, f2=Name3 I2==> f1=4, f2=Name4 I2==> f1=5, f2=Name5 I2==> f1=6, f2=Name6 ===================> Iteration: 3 I1==> f1=2, f2=Name2 I1==> f1=3, f2=Name3 I1==> f1=4, f2=Name4 I2==> f1=3, f2=Name3 I2==> f1=4, f2=Name4 I2==> f1=5, f2=Name5 I2==> f1=6, f2=Name6 ===================> Iteration: 4 I1==> f1=2, f2=Name2 I1==> f1=3, f2=Name3 I1==> f1=4, f2=Name4 I2==> f1=3, f2=Name3 I2==> f1=4, f2=Name4 I2==> f1=5, f2=Name5 I2==> f1=6, f2=Name6 ===================> Iteration: 5 I1==> f1=2, f2=Name2 I1==> f1=3, f2=Name3 I1==> f1=4, f2=Name4 I2==> f1=3, f2=Name3 I2==> f1=4, f2=Name4 I2==> f1=5, f2=Name5 I2==> f1=6, f2=Name6 ===================> Iteration: 6 I1==> f1=2, f2=Name2 I1==> f1=3, f2=Name3 I1==> f1=4, f2=Name4 I2==> f1=3, f2=Name3 I2==> f1=4, f2=Name4 I2==> f1=5, f2=Name5 I2==> f1=6, f2=Name6 ===================> Iteration: 7 I1==> f1=2, f2=Name2 I1==> f1=3, f2=Name3 I1==> f1=4, f2=Name4 I2==> f1=3, f2=Name3 I2==> f1=4, f2=Name4 I2==> f1=5, f2=Name5 I2==> f1=6, f2=Name6 ===================> Iteration: 8 I1==> f1=2, f2=Name2 I1==> f1=3, f2=Name3 I1==> f1=4, f2=Name4 I2==> f1=3, f2=Name3 I2==> f1=4, f2=Name4 I2==> f1=5, f2=Name5 I2==> f1=6, f2=Name6 ===================> Iteration: 9 I1==> f1=2, f2=Name2 I1==> f1=3, f2=Name3 I1==> f1=4, f2=Name4 I2==> f1=3, f2=Name3 I2==> f1=4, f2=Name4 I2==> f1=5, f2=Name5 I2==> f1=6, f2=Name6 ===================> Iteration: 10 I1==> f1=2, f2=Name2 I1==> f1=3, f2=Name3 I1==> f1=4, f2=Name4 I2==> f1=3, f2=Name3 I2==> f1=4, f2=Name4 I2==> f1=5, f2=Name5 I2==> f1=6, f2=Name6
9 操作大型对象
OTL提供了otl_longstring、otl_long_unicode_string以及otl_lob_stream三个类操作大型对象。其中otl_long string、otl_long_unicode_string用来存储大型对象,otl_lob_stream用来读写大型对象。
9.1大型对象的存储
9.1.1 otl_long_string
OTL提供了类otl_long_string来存放ANSI字符集编码的大型对象,其定义如下。
otl_long_string的成员变量v存放大型对象的缓存起始位置。构造函数中的参数说明如下:
l buffer_size参数指明存放大型对象的缓存大小,默认为32760,可以通过otl_connect的set_max_long_size()方法来改变默认的大小值 。
l input_length参数则指明实际输入的大小,如果该参数被设定则set_len()成员方法就没有必要使用了。
l 另外,如果使用参数external_buffer则otl_long_string不再为大型对象实际分配存储空间,而是直接使用用户传入的以external_buffer为起始地址的缓存。
9.1.2 otl_long_unicode_string
OTL提供了类otl_long_string来存放UNICODE字符集编码的大型对象,其定义如下。
otl_long_unicode_string的成员变量、方法以及构造函数和父类相同,但是注意缓冲区大小为UNICODE字符数量而不是字节数。
9.2 大型对象的读写
大型对象的读写通过类otl_lob_stream实现,其定义如下。
class otl_lob_stream { public: void set_len(const int alen); otl_lob_stream& operator<<(const std::string& s); otl_lob_stream& operator<<(const ACE_TString& s); otl_lob_stream& operator>>(std::string& s); otl_lob_stream& operator>>(ACE_TString& s); void setStringBuffer(const int chunk_size); otl_lob_stream& operator<<(const otl_long_string& s); otl_lob_stream& operator<<(const otl_long_unicode_string& s); otl_lob_stream& operator>>(otl_long_string& s); otl_lob_stream& operator>>(otl_long_unicode_string& s); int len(void); int eof(void); void close(void); bool is_initialized(void); }; // end of otl_lob_stream |
otl_lob_stream重载了<<和>>运算符来操作存放在std::string、otl_long_string、otl_long_unicode_string以及ACE_TString中的大型对象。
以下是操作大型对象的示例代码。包括INSERT、UPDATE、SELECT操作。注意在使用INSERT和UPDATE时流缓冲区的大小必须为1,另外必须将otl_stream的auto_commit标志设置为false。初始化otl_lob_stream是通过将otl_lob_stream对象作为otl_stream的<<操作符参数来实现的。
#include <iostream> using namespace std; #include <stdio.h> #define OTL_ORA8 // Compile OTL 4.0/OCI8 #include <otlv4.h> // include the OTL 4.0 header file otl_connect db; // connect object void insert() // insert rows into table {otl_long_string f2(60000); // define long string variable otl_stream o(1, // buffer size has to be set to 1 for operations with LOBs "insert into test_tab values(:f1<int>,empty_clob()) " "returning f2 into :f2<clob> ", // SQL statement db // connect object ); o.set_commit(0); // setting stream "auto-commit" to "off". It is required // when LOB stream mode is used. otl_lob_stream lob; // LOB stream for reading/writing unlimited number // of bytes regardless of the buffer size. for(int i=1;i<=20;++i){ for(int j=0;j<50000;++j) f2[j]=‘*‘; f2[50000]=‘?‘; f2.set_len(50001); o<<i; o<<lob; // Initialize otl_lob_stream by writing it // into otl_stream. Weird, isn‘t it? lob.set_len(50001+23123); // setting the total size of // the CLOB to be written. // It is required for compatibility // with earlier releases of OCI8: OCI8.0.3, OCI8.0.4. lob<<f2; // writing first chunk of the CLOB into lob f2[23122]=‘?‘; f2.set_len(23123); // setting the size of the second chunk lob<<f2; // writing the second chunk of the CLOB into lob lob.close(); // closing the otl_lob_stream } db.commit(); // committing transaction. } void update() // insert rows in table { otl_long_string f2(6200); // define long string variable otl_stream o(1, // buffer size has to be set to 1 for operations with LOBs "update test_tab " " set f2=empty_clob() " "where f1=:f1<int> " "returning f2 into :f2<clob> ", // SQL statement db // connect object ); otl_lob_stream lob; o.set_commit(0); // setting stream "auto-commit" to "off". for(int j=0;j<6000;++j){ f2[j]=‘#‘; } f2[6000]=‘?‘; f2.set_len(6001); o<<5; o<<lob; // Initialize otl_lob_stream by writing it // into otl_stream. lob.set_len(6001*4); // setting the total size of of the CLOB to be written for(int i=1;i<=4;++i) lob<<f2; // writing chunks of the CLOB into the otl_lob_stream lob.close(); // closing the otl_lob_stream db.commit(); // committing transaction } void select() { otl_long_string f2(20000); // define long string variable otl_stream i(10, // buffer size. To read CLOBs, it can be set to a size greater than 1 "select * from test_tab where f1>=:f<int> and f1<=:f*2", // SELECT statement db // connect object ); // create select stream float f1; otl_lob_stream lob; // Stream for reading CLOB i<<4; // assigning :f = 4 // SELECT automatically executes when all input variables are // assigned. First portion of output rows is fetched to the buffer while(!i.eof()){ // while not end-of-data i>>f1; cout<<"f1="<<f1<<endl; i>>lob; // initializing CLOB stream by reading the CLOB reference // into the otl_lob_stream from the otl_stream. int n=0; while(!lob.eof()){ // read while not "end-of-file" -- end of CLOB ++n; lob>>f2; // reading a chunk of CLOB cout<<" chunk #"<<n; cout<<", f2="<<f2[0]<<f2[f2.len()-1]<<", len="<<f2.len()<<endl; } lob.close(); // closing the otl_lob_stream. This step may be skipped. } } int main() { otl_connect::otl_initialize(); // initialize OCI environment try{ db.rlogon("scott/tiger"); // connect to Oracle otl_cursor::direct_exec ( db, "drop table test_tab", otl_exception::disabled // disable OTL exceptions ); // drop table otl_cursor::direct_exec ( db, "create table test_tab(f1 number, f2 clob)" ); // create table insert(); // insert records into table update(); // update records in table select(); // select records from table } catch(otl_exception& p){ // intercept OTL exceptions cerr<<p.msg<<endl; // print out error message cerr<<p.stm_text<<endl; // print out SQL that caused the error cerr<<p.var_info<<endl; // print out the variable that caused the error } db.logoff(); // disconnect from Oracle return 0; } |
输出结果:
f1=4
chunk #1, f2=**, len=20000
chunk #2, f2=**, len=20000
chunk #3, f2=**, len=20000
chunk #4, f2=*?, len=13124
f1=5
chunk #1, f2=##, len=20000
chunk #2, f2=#?, len=4004
f1=6
chunk #1, f2=**, len=20000
chunk #2, f2=**, len=20000
chunk #3, f2=**, len=20000
chunk #4, f2=*?, len=13124
f1=7
chunk #1, f2=**, len=20000
chunk #2, f2=**, len=20000
chunk #3, f2=**, len=20000
chunk #4, f2=*?, len=13124
f1=8
chunk #1, f2=**, len=20000
chunk #2, f2=**, len=20000
chunk #3, f2=**, len=20000
chunk #4, f2=*?, len=13124
10国际化
OTL的国际化支持主要是通过支持编码类型为UNICODE或UTF8的字符串操作实现。
10.1 使用UNICODE字符串
可以通过宏”#define OTL_UNICODE”指示OTL内部使用UNICODE字符串。以下是使用UNICODE字符串的示例代码。
示例代码中使用unsigned short类型数组存放UNICODE字符串,由于otl_stream的操作符<<并不支持unsigned short*类型,因此在变量绑定使用<<操作符时,将其强制转换成unsigned char*类型进行操作。与此类似,由于otl_stream的操作符>>并不支持unsigned short*类型,读取结果使用>>操作符时也是将其强制转换成unsigned char*类型进行操作。
#include <iostream> #define OTL_ORA9I // Compile OTL 4.0/OCI9i |
输出结果:
f1=8, f2=Name8 f1=9, f2=Name9 f1=10, f2=Name10 f1=11, f2=Name11 f1=12, f2=Name12 f1=13, f2=Name13 f1=14, f2=Name14 f1=15, f2=Name15 f1=16, f2=Name16 f1=4, f2=Name4 f1=5, f2=Name5 f1=6, f2=Name6 f1=7, f2=Name7 f1=8, f2=Name8
10.2 使用UTF8字符串
可以通过宏”#define OTL_ORA_UTF8”指示OTL内部使用UTF8字符串。以下是使用UTF字符串的示例代码。
示例代码中使用unsigned char类型数组存放UTF8字符串, 在使用otl_stream的操作符<<进行变量绑定时,通过转型并使用copy()函数将其转成char*类型进行操作。另外需要注意到环境变量的设定NLS_LANG=.AL32UTF8。
#include <iostream> #define OTL_ORA9I // Compile OTL 4.0/OCI9i // set your Oracle Client NLS_LANG |
输出结果:
f1=8, f2=61 62 63 d0 9e d0 9b d0 ac d0 93 d0 90 f1=9, f2=61 62 63 d0 9e d0 9b d0 ac d0 93 d0 90 f1=10, f2=61 62 63 d0 9e d0 9b d0 ac d0 93 d0 90 f1=11, f2=61 62 63 d0 9e d0 9b d0 ac d0 93 d0 90 f1=12, f2=61 62 63 d0 9e d0 9b d0 ac d0 93 d0 90 f1=13, f2=61 62 63 d0 9e d0 9b d0 ac d0 93 d0 90 f1=14, f2=61 62 63 d0 9e d0 9b d0 ac d0 93 d0 90 f1=15, f2=61 62 63 d0 9e d0 9b d0 ac d0 93 d0 90 f1=16, f2=61 62 63 d0 9e d0 9b d0 ac d0 93 d0 90
11 Reference Cursor流
OTL为OTL/OCI8/8i/9i/10g提供了类otl_refcur_stream,它可以从reference cursor类型的绑定变量中读取结果行,其定义如下所示。
class otl_refcur_stream { public: void set_column_type(const int column_ndx, const int col_type, const int col_size=0); void set_all_column_types(const unsigned mask=0); void rewind(void); int is_null(void); int eof(void); void close(void); otl_column_desc* describe_select(int& desc_len); otl_var_desc* describe_out_vars(int& desc_len); otl_var_desc* describe_next_out_var(void); otl_refcur_stream& operator>>(char& c); otl_refcur_stream& operator>>(unsigned char& c); otl_refcur_stream& operator>>(char* s); otl_refcur_stream& operator>>(unsigned char* s); otl_refcur_stream& operator>>(int& n); otl_refcur_stream& operator>>(unsigned& u); otl_refcur_stream& operator>>(short& sh); otl_refcur_stream& operator>>(long int& l); otl_refcur_stream& operator>>(float& f); otl_refcur_stream& operator>>(double& d); //for large whole number otl_refcur_stream& operator>>(OTL_BIGINT& n); //for LOBs otl_refcur_stream& operator>>(otl_long_string& s); otl_refcur_stream& operator>>(otl_datetime& dt); otl_refcur_stream& operator>>(otl_lob_stream& lob); otl_refcur_stream& operator>>(std::string& s); //for UNICODE otl_stream& operator>>(unsigned char* s); otl_stream& operator>>(otl_long_unicode_string& s); }; // end of otl_refcur_stream
|
otl_refcur_stream的初始化通过将otl_refcur_stream对象作为otl_stream的>>操作符参数来实现。以下是其基本使用的示例代码。
#include <iostream> using namespace std; #include <stdio.h> #define OTL_ORA8 // Compile OTL 4.0/OCI8 // :cur is a bind variable name, refcur -- its type, |
输出结果:
f1=8, f2=Name8 f1=9, f2=Name9 f1=10, f2=Name10 f1=11, f2=Name11 f1=12, f2=Name12 f1=13, f2=Name13 f1=14, f2=Name14 f1=15, f2=Name15 f1=16, f2=Name16 f1=4, f2=Name4 f1=5, f2=Name5 f1=6, f2=Name6 f1=7, f2=Name7 f1=8, f2=Name8
12 杂项
12.1 使用otl_nocommit_stream避免SQL执行成功后立刻提交事务
otl_stream提供了方法set_commit()方法(见4.1小节)设置auto_commit标志。该标志控制SQL执行成功后,是否立刻提交当前事务。auto_commit默认为true, 即提交事务。可以通过设置auto_commit标志值为false避免这种情况。
otl_stream的派生类otl_nocimmit_stream提供了SQL执行成功后不立刻提交事务的功能,该类通过将auto_commit标记默认设置为true, 以简化实现该功能时的代码编写。
以下是使用otl_nocommit_stream类避免SQL执行成功后立刻提交事务的示例代码。
#include <iostream> using namespace std; #include <stdio.h> #define OTL_ORA8 // Compile OTL 4.0/OCI8 #include <otlv4.h> // include the OTL 4.0 header file otl_connect db; // connect object void insert() // insert rows into table { otl_nocommit_stream o (50, // buffer size "insert into test_tab values(:f1<float>,:f2<char[31]>)", // SQL statement db // connect object ); char tmp[32]; for(int i=1;i<=100;++i){ sprintf(tmp,"Name%d",i); o<<(float)i<<tmp; } o.flush(); db.commit(); } void select() { otl_stream i(50, // buffer size "select * from test_tab where f1>=:f<int> and f1<=:f*2", // SELECT statement db // connect object ); // create select stream float f1; char f2[31]; i<<8; // assigning :f = 8 // SELECT automatically executes when all input variables are // assigned. First portion of output rows is fetched to the buffer while(!i.eof()){ // while not end-of-data i>>f1>>f2; cout<<"f1="<<f1<<", f2="<<f2<<endl; } i<<4; // assigning :f = 4 // SELECT automatically executes when all input variables are // assigned. First portion of output rows is fetched to the buffer while(!i.eof()){ // while not end-of-data i>>f1>>f2; cout<<"f1="<<f1<<", f2="<<f2<<endl; } } int main() { otl_connect::otl_initialize(); // initialize OCI environment try{ db.rlogon("scott/tiger"); // connect to Oracle otl_cursor::direct_exec ( db, "drop table test_tab", otl_exception::disabled // disable OTL exceptions ); // drop table otl_cursor::direct_exec ( db, "create table test_tab(f1 number, f2 varchar2(30))" ); // create table insert(); // insert records into table select(); // select records from table } catch(otl_exception& p){ // intercept OTL exceptions cerr<<p.msg<<endl; // print out error message cerr<<p.stm_text<<endl; // print out SQL that caused the error cerr<<p.var_info<<endl; // print out the variable that caused the error } db.logoff(); // disconnect from Oracle return 0; }
|
输出结果:
f1=8, f2=Name8
f1=9, f2=Name9
f1=10, f2=Name10
f1=11, f2=Name11
f1=12, f2=Name12
f1=13, f2=Name13
f1=14, f2=Name14
f1=15, f2=Name15
f1=16, f2=Name16
f1=4, f2=Name4
f1=5, f2=Name5
f1=6, f2=Name6
f1=7, f2=Name7
f1=8, f2=Name8
12.2 SELECT中的数据类型映射覆写
otl_stream在执行SELECT语句返回结果列时,具有如下表12-1所示的数据库数据类型(Database datatype)到默认数据类型(Default datatype)的映射。
某些情况下往往需要对这种默认映射进行覆写,即将数据库数据类型映射为非默认的数据类型。例如当读取超过16位的数字时,将其映射为字符串类型往往更方便。为此,otl_stream提供了set_colunm_type()方法(参见4.1小节)进行数据类型覆写。
12-1 otl_stream中的数据类型映射覆写
Database datatype |
Default datatype |
Datatype override |
NUMBER (Oracle) |
otl_var_double |
otl_var_char, otl_var_int, otl_var_float, otl_var_short, otl_var_unsigned_int |
NUMERIC, FLOAT, REAL, MONEY, DECIMAL (MS SQL Server, Sybase, DB2) |
otl_var_double |
otl_var_char, otl_var_int, otl_var_float, otl_var_short, otl_var_unsigned_int, otl_var_long_int |
INT (MS SQL Server, Sybase, DB2) |
otl_var_int |
otl_var_char, otl_var_double, otl_var_float, otl_var_short, otl_var_unsigned_int, otl_var_long_int |
SMALLINT, TINYINT (MS SQL Server, Sybase, DB2) |
otl_var_short |
otl_var_char, otl_var_int, otl_var_float, otl_var_double, otl_var_unsigned_int, otl_var_long_int |
DATE (Oracle), DATETIME (MS SQL Server, Sybase) |
otl_timestamp |
otl_var_char |
LONG (Oracle) |
otl_var_varchar_long |
otl_var_char (<=32000 bytes) |
TEXT (MS SQL Server, Sybase) |
otl_var_varchar_long |
otl_var_char(<= max. size of varchar, e.g. <=8000 in MS SQL 7.0) |
以下是SELECT中的数据类型覆写的示例代码。
#include <iostream> using namespace std; #include <stdio.h> #define OTL_ORA8 // Compile OTL 4.0/OCI8 |
输出结果:
f1=12345678900000008, f2=Name8 f1=12345678900000009, f2=Name9 f1=12345678900000010, f2=Name10 f1=12345678900000011, f2=Name11 f1=12345678900000012, f2=Name12 f1=12345678900000013, f2=Name13 f1=12345678900000014, f2=Name14 f1=12345678900000015, f2=Name15 f1=12345678900000016, f2=Name16 f1=12345678900000004, f2=Name4 f1=12345678900000005, f2=Name5 f1=12345678900000006, f2=Name6 f1=12345678900000007, f2=Name7 f1=12345678900000008, f2=Name8
12.3 使用OTL tracing跟踪OTL的方法调用
OTL可以通过宏定义打开内部的跟踪机制,方便程序的调试。通过宏OTL_TRACE_LEVEL指明跟踪的级别,通过宏OTL_TRACE_STREAM指明跟踪消息的输出流,通过宏OTL_TRACE_LINE_PREFIX指明跟踪消息的输出头。
以下是使用OTL tracing来跟踪OTL方法调用的示例代码。
#include <iostream> using namespace std; #include <stdio.h> unsigned int my_trace_level= |
输出结果:
MY OTL TRACE ==> otl_connect(this=004332D4)::rlogon(connect_str="scott/*****", auto_commit=0); MY OTL TRACE ==> otl_cursor::direct_exec(connect=004332CC,sqlstm="drop table test_tab",exception_enabled=0); MY OTL TRACE ==> otl_cursor::direct_exec(connect=004332CC,sqlstm="create table test_tab(f1 int, f2 varchar(30))",exception_enabled=1); MY OTL TRACE ==> otl_stream(this=0012FEFC)::open(buffer_size=10, sqlstm=insert into test_tab values(:f1<int>,:f2<char[31]>), connect=004332CC); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator <<(int: ftype=4, placeholder=:f1, value=1); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator <<(char*: ftype=1, placeholder=:f2, value="Name1"); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator <<(int: ftype=4, placeholder=:f1, value=2); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator <<(char*: ftype=1, placeholder=:f2, value="Name2"); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator <<(int: ftype=4, placeholder=:f1, value=3); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator <<(char*: ftype=1, placeholder=:f2, value="Name3"); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator <<(int: ftype=4, placeholder=:f1, value=4); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator <<(char*: ftype=1, placeholder=:f2, value="Name4"); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator <<(int: ftype=4, placeholder=:f1, value=5); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator <<(char*: ftype=1, placeholder=:f2, value="Name5"); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator <<(int: ftype=4, placeholder=:f1, value=6); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator <<(char*: ftype=1, placeholder=:f2, value="Name6"); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator <<(int: ftype=4, placeholder=:f1, value=7); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator <<(char*: ftype=1, placeholder=:f2, value="Name7"); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator <<(int: ftype=4, placeholder=:f1, value=8); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator <<(char*: ftype=1, placeholder=:f2, value="Name8"); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator <<(int: ftype=4, placeholder=:f1, value=9); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator <<(char*: ftype=1, placeholder=:f2, value="Name9"); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator <<(int: ftype=4, placeholder=:f1, value=10); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator <<(char*: ftype=1, placeholder=:f2, value="Name10"); MY OTL TRACE ==> otl_stream, executing SQL Stm=insert into test_tab values(:f1 ,:f2 ), current batch size=10, row offset=0 MY OTL TRACE ==> otl_connect(this=004332CC)::commit(); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator <<(int: ftype=4, placeholder=:f1, value=11); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator <<(char*: ftype=1, placeholder=:f2, value="Name11"); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator <<(int: ftype=4, placeholder=:f1, value=12); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator <<(char*: ftype=1, placeholder=:f2, value="Name12"); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator <<(int: ftype=4, placeholder=:f1, value=13); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator <<(char*: ftype=1, placeholder=:f2, value="Name13"); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator <<(int: ftype=4, placeholder=:f1, value=14); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator <<(char*: ftype=1, placeholder=:f2, value="Name14"); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator <<(int: ftype=4, placeholder=:f1, value=15); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator <<(char*: ftype=1, placeholder=:f2, value="Name15"); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator <<(int: ftype=4, placeholder=:f1, value=16); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator <<(char*: ftype=1, placeholder=:f2, value="Name16"); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator <<(int: ftype=4, placeholder=:f1, value=17); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator <<(char*: ftype=1, placeholder=:f2, value="Name17"); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator <<(int: ftype=4, placeholder=:f1, value=18); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator <<(char*: ftype=1, placeholder=:f2, value="Name18"); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator <<(int: ftype=4, placeholder=:f1, value=19); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator <<(char*: ftype=1, placeholder=:f2, value="Name19"); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator <<(int: ftype=4, placeholder=:f1, value=20); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator <<(char*: ftype=1, placeholder=:f2, value="Name20"); MY OTL TRACE ==> otl_stream, executing SQL Stm=insert into test_tab values(:f1 ,:f2 ), current batch size=10, row offset=0 MY OTL TRACE ==> otl_connect(this=004332CC)::commit(); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator <<(int: ftype=4, placeholder=:f1, value=21); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator <<(char*: ftype=1, placeholder=:f2, value="Name21"); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator <<(int: ftype=4, placeholder=:f1, value=22); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator <<(char*: ftype=1, placeholder=:f2, value="Name22"); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator <<(int: ftype=4, placeholder=:f1, value=23); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator <<(char*: ftype=1, placeholder=:f2, value="Name23"); MY OTL TRACE ==> otl_stream(this=0012FEFC)::close(); MY OTL TRACE ==> otl_stream, executing SQL Stm=insert into test_tab values(:f1 ,:f2 ), current batch size=3, row offset=0 MY OTL TRACE ==> otl_connect(this=004332CC)::commit(); MY OTL TRACE ==> otl_stream(this=0012FEFC)::open(buffer_size=5, sqlstm=select * from test_tab where f1>=:f<int> and f1<=:ff<int>*2, connect=004332CC); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator <<(int: ftype=4, placeholder=:f, value=8); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator <<(int: ftype=4, placeholder=:ff, value=8); MY OTL TRACE ==> otl_stream, executing SQL Stm=select * from test_tab where f1>=:f and f1<=:ff *2, buffer size=5 MY OTL TRACE ==> otl_stream, fetched the first batch of rows, SQL Stm=select * from test_tab where f1>=:f and f1<=:ff *2, RPC=5 MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator >>(float& : ftype=2, placeholder=F1, value=8); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator >>(char* : ftype=1, placeholder=F2, value="Name8"); f1=8, f2=Name8 MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator >>(float& : ftype=2, placeholder=F1, value=9); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator >>(char* : ftype=1, placeholder=F2, value="Name9"); f1=9, f2=Name9 MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator >>(float& : ftype=2, placeholder=F1, value=10); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator >>(char* : ftype=1, placeholder=F2, value="Name10"); f1=10, f2=Name10 MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator >>(float& : ftype=2, placeholder=F1, value=11); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator >>(char* : ftype=1, placeholder=F2, value="Name11"); f1=11, f2=Name11 MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator >>(float& : ftype=2, placeholder=F1, value=12); MY OTL TRACE ==> otl_stream, fetched the next batch of rows, SQL Stm=select * from test_tab where f1>=:f and f1<=:ff *2, RPC=9 MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator >>(char* : ftype=1, placeholder=F2, value="Name12"); f1=12, f2=Name12 MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator >>(float& : ftype=2, placeholder=F1, value=13); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator >>(char* : ftype=1, placeholder=F2, value="Name13"); f1=13, f2=Name13 MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator >>(float& : ftype=2, placeholder=F1, value=14); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator >>(char* : ftype=1, placeholder=F2, value="Name14"); f1=14, f2=Name14 MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator >>(float& : ftype=2, placeholder=F1, value=15); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator >>(char* : ftype=1, placeholder=F2, value="Name15"); f1=15, f2=Name15 MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator >>(float& : ftype=2, placeholder=F1, value=16); MY OTL TRACE ==> otl_stream(this=0012FEFC)::operator >>(char* : ftype=1, placeholder=F2, value="Name16"); f1=16, f2=Name16 MY OTL TRACE ==> otl_stream(this=0012FEFC)::close(); MY OTL TRACE ==> otl_connect(this=004332CC)::logoff();
12.4 获取已处理行数(Rows Processed Count)
otl_stream提供了get_rpc()方法(参见4.1小节)获取已处理行数。另外,类otl_cursor的direct_exec()方法如果处理成功也返回已处理行数。
已处理行数和INSERT、UPDATE以及DELETE语句有关。对于INSERT语句而言,已处理行数可能小于等于流的缓冲区大小。对于UPDATE以及DELETE而言,则和多少行被更新或删除相关。
以下是获取已处理行数的示例代码。
#include <iostream> using namespace std; #include <stdio.h> #define OTL_ORA8 // Compile OTL 4.0/OCI8 |
输出结果:
Rows inserted: 123 Rows deleted: 29
12.5 使用otl_connect的重载运算符<<, <<=, >>
otl_connect重载了<<, <<=和>>运算符(参见4.2小节),用于简化编程操作。其中操作符<<发送字符串到otl_connect对象。如果该otl_connect对象还没有连接到数据库则字符串为"userid/[email protected]"格式的连接字符串,它使得otl_connect对象能够立刻连接数据库。如果该otl_connect对象已经连接到数据库则字符串被当作为静态SQL语句立刻执行。
操作符<<=发送字符串到otl_connect对象。otl_connect对象将保存该字符串并被下一个>>操作符使用。该字符串是一个拥有占位符并且能够发送到otl_stream对象的SQL语句。操作符>>取出之前使用操作符<<=保存的SQL语句并则发送到otl_stream对象。它使得该SQL语句被otl_stream打开。
以下是使用otl_connect重载的<<, <<=和>>运算符示例代码。
#include <iostream> // #define OTL_ORA8 // Compile OTL 4.0/OCI8 |
输出结果:
f1=8, f2=Name8 f1=9, f2=Name9 f1=10, f2=Name10 f1=11, f2=Name11 f1=12, f2=Name12 f1=13, f2=Name13 f1=14, f2=Name14 f1=15, f2=Name15 f1=16, f2=Name16 f1=4, f2=Name4 f1=5, f2=Name5 f1=6, f2=Name6 f1=7, f2=Name7 f1=8, f2=Name8
12.6 手工刷新otl_stream缓冲区
otl_stream提供了方法set_flush()方法(见4.1小节)设置auto_flush标志。该标志仅仅控制析构函数中由于输出缓冲区数据变脏引起的刷新,并不能控制缓冲区填满引起自动刷新。auto_flush标志默认为true即进行刷新。
提供set_flush()方法控制otl_stream析构函数中的刷新操作和C++的异常机制有关。C++异常机制退出作用域时,局部对象会由于堆栈回退发生析构。如果在析构函数中又产生异常将导致std::terminate()被调用,从而使程序中止。
otl_stream析构函数中的输出缓冲区刷新在某些情况下极有可能导致这种级联异常发生,因此otl_stream提供了set_flush()方法进行控制。如果auto_flush被设置成false,则必须手工调用otl_stream的flush()或close()方法进行刷新。当然,前提是输出缓冲区还没有填满,因为缓冲区填满的自动刷新是不能通过set_flush()控制的。
以下是手工刷新otl_stream缓冲区的示例代码。
#include <iostream> #include <stdio.h> // Uncomment the line below when OCI7 is used with OTL // #define OTL_ORA7 // Compile OTL 4.0/OCI7 using namespace std; #define OTL_ORA8 // Compile OTL 4.0/OCI8 #include <otlv4.h> // include the OTL 4.0 header file otl_connect db; // connect object void insert1() // insert rows into table { otl_stream o; // define an otl_stream variable o.set_flush(false); // set the auto-flush flag to OFF. o.open(200, // buffer size "insert into test_tab values(:f1<float>,:f2<char[31]>)", // SQL statement db // connect object ); char tmp[32]; for(int i=1;i<=100;++i){ sprintf(tmp,"Name%d",i); o<<(float)i<<tmp; if(i%55==0) throw "Throwing an exception"; }
|
输出结果:
Throwing an exception Selecting the first time around: Selecting the second time around: f1=8, f2=Name8 f1=9, f2=Name9 f1=10, f2=Name10 f1=11, f2=Name11 f1=12, f2=Name12 f1=13, f2=Name13 f1=14, f2=Name14 f1=15, f2=Name15 f1=16, f2=Name16 f1=4, f2=Name4 f1=5, f2=Name5 f1=6, f2=Name6 f1=7, f2=Name7 f1=8, f2=Name8
12.7 忽略INSERT操作时的重复键异常
底层操作为Oracle API时,otl_stream提供了特殊版本的flush()方法(参见4.1小节),该方法可以设置刷新的起始行以及忽略产生错误时抛出的otl_exception异常继续刷新。在进行INSERT操作有时候需要忽略重复键值引起的错误继续处理,这时可以利用该flush()方法进行处理。
以下是忽略INSERT操作时的重复键异常示例代码。
#include <iostream> using namespace std; #include <stdio.h> //#define OTL_ORA8I // Compile OTL 4.0/OCI8 |
输出结果:
TOTAL_RPC=1, RPC=1 TOTAL_RPC=4, RPC=3 f1=1, f2=Line1 f1=2, f2=Line2 f1=3, f2=Line3 f1=4, f2=Line4
12.8 使用模板otl_value<T>创建数据容器
otl_value<T>是一个OTL模板类,能够基于标量的数据类型包括int, unsigned, long, short, float, double, otl_datetime(OTL date&time container), std::string (STL string class)来创建派生的数据容器。
派生的数据容器具有内建的NULL指示器功能,即容器内部拥有一个NULL指示器域并且能够从一个操作传递到另一个操作。例如从SELECT语句读取并装入容器otl_value<int>的值是NULL,在该值被写入INSERT语句后,otl_value<int>容器中的NULL指示器域仍然保存该NULL值并且NULL值也从SELECT传递到了INSERT。
模板otl_value<T>的使用可以通过”#define OTL_STL”或者”#define OTL_VALUE_TEMPLATE_ON”激活。其定义如下:
template<class TData> class otl_value{ public: TData v; bool ind;
otl_value(); // default constructor
otl_value(const otl_value<TData>& var); // copy constructor otl_value(const TData& var); // copy constructor otl_value(const otl_null& var); // copy constructor
otl_value<TData>& operator=(const otl_value<TData>& var); //assignment operator otl_value<TData>& operator=(const TData& var); // assignment operator otl_value<TData>& operator=(const otl_null& var); // assignment operator
bool is_null(void) const; void set_null(void); void set_non_null(void); }; // end of otl_value
template <class TData> otl_stream& operator<<(otl_stream& s, const otl_value<TData>& var);
otl_stream& operator>>(otl_stream& s, otl_value<TData>& var);
template <class TData> std::ostream& operator<<(std::ostream& s, const otl_value<TData>& var); |
其中方法set_null()和set_non_null()将otl_value设置成NULL或者非NULL,这两个方法必须直接操作public数据成员TData v或bool ind的时候才使用。数据成员v为标量数据类型值的存放容器,成员ind则为NULL指示器。
以下为使用otl_value<T>模板的示例代码。
#define OTL_ORA8 // Compile OTL 4.0/OCI8 #define OTL_STL // Turn on STL features and otl_value<T> #define OTL_ANSI_CPP // Turn on ANSI C++ typecasts #include <otlv4.h> // include the OTL 4.0 header file using namespace std; otl_connect db; // connect object void insert() // insert rows into table { otl_stream o(50, // buffer size "insert into test_tab " "values(:f1<int>,:f2<char[31]>,:f3<timestamp>)", // SQL statement db // connect object ); otl_value<string> f2; // otl_value container of STL string otl_value<otl_datetime> f3; // container of otl_datetime for(int i=1;i<=100;++i){ if(i%2==0) f2="NameXXX"; else f2=otl_null(); // Assign otl_null() to f2 if(i%3==0){ // Assign a value to f3 via the .v field directly f3.v.year=2001; f3.v.month=1; f3.v.day=1; f3.v.hour=13; f3.v.minute=10; f3.v.second=5; f3.set_non_null(); // Set f3 as a "non-NULL" }else f3.set_null(); // Set f3 as null via .set_null() function o<<i<<f2<<f3; } } void select() { otl_stream i(50, // buffer size "select * from test_tab where f1>=:f<int> and f1<=:f*2", // SELECT statement db // connect object ); // create select stream int f1; otl_value<string> f2; otl_value<otl_datetime> f3; i<<8; // assigning :f = 8 // SELECT automatically executes when all input variables are // assigned. First portion of output rows is fetched to the buffer while(!i.eof()){ // while not end-of-data i>>f1>>f2>>f3; cout<<"f1="<<f1<<", f2="<<f2<<", f3="<<f3<<endl; } i<<4; // assigning :f = 4 // SELECT automatically executes when all input variables are // assigned. First portion of output rows is fetched to the buffer while(!i.eof()){ // while not end-of-data i>>f1>>f2>>f3; cout<<"f1="<<f1<<", f2="<<f2<<", f3="<<f3<<endl; } } int main() { otl_connect::otl_initialize(); // initialize OCI environment try{ db.rlogon("scott/tiger"); // connect to Oracle otl_cursor::direct_exec ( db, "drop table test_tab", otl_exception::disabled // disable OTL exceptions ); // drop table otl_cursor::direct_exec ( db, "create table test_tab(f1 number, f2 varchar2(30), f3 date)" ); // create table insert(); // insert records into table select(); // select records from table } catch(otl_exception& p){ // intercept OTL exceptions cerr<<p.msg<<endl; // print out error message cerr<<p.stm_text<<endl; // print out SQL that caused the error cerr<<p.var_info<<endl; // print out the variable that caused the error } db.logoff(); // disconnect from Oracle return 0; } |
输出结果:
f1=8, f2=NameXXX, f3=NULL
f1=9, f2=NULL, f3=1/1/2001 13:10:5
f1=10, f2=NameXXX, f3=NULL
f1=11, f2=NULL, f3=NULL
f1=12, f2=NameXXX, f3=1/1/2001 13:10:5
f1=13, f2=NULL, f3=NULL
f1=14, f2=NameXXX, f3=NULL
f1=15, f2=NULL, f3=1/1/2001 13:10:5
f1=16, f2=NameXXX, f3=NULL
f1=4, f2=NameXXX, f3=NULL
f1=5, f2=NULL, f3=NULL
f1=6, f2=NameXXX, f3=1/1/2001 13:10:5
f1=7, f2=NULL, f3=NULL
f1=8, f2=NameXXX, f3=NULL
12.9 使用OTL流的读迭代器遍历流返回的Reference Cursor
otl_stream的构造函数和open()方法(参见4.1小节)中参数sqlstm 可以为SQL, 也可以为PL/SQL块或者存储过程调用,如果流返回reference cursor,则需要在参数ref_cur_placeholder中指明占位符号。
以下是使用使用OTL流的读迭代器遍历OTL流返回的reference cursor的示例代码。
#include <iostream> // #define OTL_ORA7 // Compile OTL 4.0/OCI7 " open :cur1 for " " select * from test_tab " " where f1>=:f11<int> " " and f1<=:f12<int>*2; " "end;", // SELECT statement |
输出结果:
f1=8, f2=Name8 f1=9, f2=Name9 f1=10, f2=Name10 f1=11, f2=Name11 f1=12, f2=Name12 f1=13, f2=Name13 f1=14, f2=Name14 f1=15, f2=Name15 f1=16, f2=Name16 f1=4, f2=Name4 f1=5, f2=Name5 f1=6, f2=Name6 f1=7, f2=Name7 f1=8, f2=Name8
12.10使用Reference Cursor流从存储过程中返回多个Referece Cursor
otl_refcur_stream和reference cursor类型的占位符联合,允许在存储过程调用中返回多个reference cursor。以下为示例代码。
#include <iostream> #define OTL_ORA8 // Compile OTL 4.0/OCI8 // :str1 is an output string parameter "end;", // PL/SQL block that calls a stored procedure i.set_commit(0); // set stream "auto-commit" to OFF. char str1[101]; // reference cursor :cur1 |
输出结果:
STR1=Hello, world =====> Reading :cur1... f1=8, f2=Name8 f1=9, f2=Name9 f1=10, f2=Name10 f1=11, f2=Name11 f1=12, f2=Name12 f1=13, f2=Name13 f1=14, f2=Name14 f1=15, f2=Name15 f1=16, f2=Name16 =====> Reading :cur2... f1=4, f2=Name4 f1=5, f2=Name5 f1=6, f2=Name6 f1=7, f2=Name7 f1=8, f2=Name8
13 最佳实践
13.1流缓冲区大小的设置
OTL流的性能主要被缓冲区大小一个参数控制,在创建使用OTL流时必须通过构造函数或open()函数的第一个参数arr_size指定,合理设置流缓冲区大小对数据库访问的性能优化尤其重要。
与INSERT/DELETE/UPDATE语句不同,SELECT语句的执行往往导致若干满足查询条件的记录行返回,OTL的底层实现将这两类语句的操作执行区分开来,因此SELECT语句相关的流缓冲区在作用和使用方式上与其他语句存在很大的差别。
对于SELECT语句而言,缓冲区大小主要影响OTL底层调用OCI接口OCIStmtFetch()一次性获取结果记录的行数。其底层实现如以下代码片断所示。
/ ** *OTL底层的OCI接口封装类otl_cur的fetch()具体实现,其功能主要是 *在执行SELECT语句后获取返回的记录行。 *参数:iters 输入参数,从当前位置处一次性提取的记录数 * eof_date 输入输出参数,标识是否还有未获取的记录行,0为是,1为否 */ int fetch(const otl_stream_buffer_size_type iters, int& eof_data) { eof_data=0; status=OCIStmtFetch( cda, //语句句柄 errhp, //错误句柄 OTL_SCAST(ub4,iters), //从当前位置处开始一次提取的记录数 OTL_SCAST(ub4,OCI_FETCH_NEXT), //提取方向 OTL_SCAST(ub4,OCI_DEFAULT) //模式 );
eof_status=status; if(status!=OCI_SUCCESS&& status!=OCI_SUCCESS_WITH_INFO&& status!=OCI_NO_DATA) return 0;
//如果记录被提取完或没有数据则 //输入输出参数eof_data赋值为1,返回1 if(status==OCI_NO_DATA){ eof_data=1; return 1; } return 1; } |
由于缓冲区大小作为第一参数传递给fetch()方法进行底层的OCI接口调用,因此缓冲区大小决定了从当前位置处开始一次提取的记录数。
对于查询数据量较大的应用,缓冲区大小的合理设置往往是性能优化的关键。表13-1为查询10000条记录时的缓冲区大小对结果行获取的影响。数据库为Oracle10g, 操作系统为HP-UNIX。
13-1 查询10000条记录时缓冲区大小不同设置的相应耗时
缓存区大小 |
耗时(s) |
1 |
0.25 |
10 |
0.14 |
50 |
0.09 |
100 |
0.06 |
200 |
0.05 |
300 |
0.05 |
1000 |
0.05 |
2000 |
0.04 |
备注:(1) 测试环境为HP, Oracle10g
(2) 耗时仅指SQL执行成功后,记录的获取时间
由该表可见,对于查询结果为10000条记录的SELECT语句而言,缓冲区大小的设置对结果行的获取时间存在几十倍的差距。因此在使用OTL流进行数据库查询时,请合理设置缓冲区大小。
注意对于SELECT语句来说,缓冲区的大小并不影响其执行时机。当otl_stream以SELECT语句实例化,并设定好缓冲区大小后,一旦所有声明的绑定变量使用<<操作符被绑定完成,该SELECT语句将被OTL流立刻执行,与设置的缓存区具体大小并没有关系。
与此相反,对于INSERT/DELETE/UPDATE语句,缓冲区大小的设置将影响其执行时机。当缓冲区被SQL填满时,OTL流将自动刷新缓冲区,立刻批量执行缓冲区中所有的SQL。因此,当执行语句为INSERT/DELETE/UPDATE时,也应该根据需要合理设置缓冲区大小。
13.2批量操作注意的问题
当使用OTL的SQL变量绑定进行数据的批量操作时,应该注意otl_stream缓冲区大小的合理设置(参见13.1小节)以及OTL默认的语句执行成功后立刻提交事务。
对于批量操作,OTL默认的语句执行成功后立刻提交事务的操作方式往往不实用。例如对于批量更新10000条记录,缓冲区大小为1000的情况,当缓冲区填满时更新操作被执行,执行成功后当前事务被立刻提交,如果在此后的处理中出现错误,根本没有办法通过回滚事务取消之前的更新。防止语句执行后立刻提交事务的方法请参见12.1小节。
OTL流otl_stream 的这种默认操作方式,主要和底层调用OCI接口OCIStmtExecute()的相关实现有关。其底层实现如以下代码片断所示。
由于otl_stream默认将语句执行成功立刻提交事务的开关打开,因此在exec()方法中调用OCI接口时,将使用该操作模式。
13.3与开源项目ORAPP的性能对比
ORAPP是一个基于C++语言的封装了OCI函数,对Oracle数据库进行专门访问的类库。表13-2所示的性能对比结果的测试环境为Linux, Oracle10g, OTL流缓冲区大小为1000, 可以看出当数据量剧增时OTL的性能明显优越。
表1-2 ORAPP与OTL性能对比
数据量 |
OTL耗时(s) |
ORAPP耗时(s) |
1000 |
0.02 |
0.02 |
10000 |
0.03 |
0.21 |
100000 |
0.19 |
2.04 |
300000 |
0.56 |
5.77 |
备注:(1) 测试环境为Linux, Oracle10g, OTL流缓冲区大小为1000
(2) 耗时包括SQL执行时间和记录获取时间的总和
究其原因,是由于OTL存在流缓冲区、流缓冲池等性能保证的机制,对于大数据量的查询OTL可以通过设置缓冲池大小,指定每次底层OCI调用获取的结果行,几倍甚至几十倍的提高性能。ORAPP则将每次获取的记录行数硬编码为1,性能不能保证。
以上是关于OTL使用指南的主要内容,如果未能解决你的问题,请参考以下文章