51nod 1434 区间LCM 素数

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了51nod 1434 区间LCM 素数相关的知识,希望对你有一定的参考价值。

题目来源: TopCoder
基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题
 
一个整数序列S的LCM(最小公倍数)是指最小的正整数X使得它是序列S中所有元素的倍数,那么LCM(S)=X。
例如,LCM(2)=2,LCM(4,6)=12,LCM(1,2,3,4,5)=60。
现 在给定一个整数N(1<=N<=1000000),需要找到一个整数M,满足M>N,同时LCM(1,2,3,4,...,N- 1,N) 整除 LCM(N+1,N+2,....,M-1,M),即LCM(N+1,N+2,....,M-1,M)是LCM(1,2,3,4,...,N-1,N) 的倍数.求最小的M值。
Input
多组测试数据,第一行一个整数T,表示测试数据数量,1<=T<=5
每组测试数据有相同的结构构成:
每组数据一行一个整数N,1<=N<=1000000。
Output
每组数据一行输出,即M的最小值。
Input示例
3
1
2
3
Output示例
2
4
6

思路:对于【1,N】区间的素数, 设为p1, p2, p3, ~,pn
找到最小的c1和k1 使得 m >= c1*p1^k1 > n;
result = max{c1*p1^k1, c2*p2^k2,~,cn*pn^kn};
 1 #include <iostream>
 2 #include <cstdio>
 3 
 4 using namespace std;
 5 const int MAXN = 1e6;
 6 int prime[MAXN+10], num;
 7 bool a[MAXN+10];
 8 
 9 void init(){
10     num = 0;
11     a[1] = false;
12     for(int i = 2; i <= MAXN; i++) a[i] = true;
13     for(int i = 2; i <= MAXN; i++){
14         if(a[i]){
15             prime[++num] = i;
16         }
17         for(int j = 1; j <= num; j++){
18             if(i*prime[j] > MAXN) break;
19             a[i*prime[j]] = false;
20             if(i%prime[j] == 0) break;
21         }
22     }
23 }
24 int slove(int n){
25     int res = 2;
26         for(int i = 1; prime[i] <= n && i <= num; i++){
27                 int sum = prime[i];
28                 while(sum <= n/prime[i]) sum *= prime[i];
29                 res= max(res, (n/sum + 1)*sum);
30         }
31     return res;
32 }
33 int main(){
34     int T, n;
35     init();
36     scanf("%d", &T);
37     while(T--){
38         scanf("%d", &n);
39         printf("%d\n", slove(n));
40     }
41     return 0;
42 }

 


以上是关于51nod 1434 区间LCM 素数的主要内容,如果未能解决你的问题,请参考以下文章

51nod 1434 区间LCM (质因数分解)

51nod 1184 第n个素数

51nod 1203 jzplcm

51nod 1012 最小公倍数LCM

1012 最小公倍数LCM(51NOD基础题)

51NOD 2026:Gcd and Lcm——题解