hdu5492_枚举dp

Posted _lm

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了hdu5492_枚举dp相关的知识,希望对你有一定的参考价值。

题目大意:给N*M(1<=N,M<=30)的矩阵,矩阵的每一格有一个非负权值(<=30)

从(1,1)出发,每次只能向右或向下移动,到达(n,m)时,经过的格子的权值形成序列A,

(N+M1)N+M1i=1(AiAavg)2

的最小值。

 参考链接:http://blog.csdn.net/u014679804/article/details/48769267

将式子展开后,化简整理可得:(N+M-1)*s1-s2。其中s1是序列A的平方和,s2是序列A的和的平方。

注意到序列A的和不会超过(30+30-1)*30。

设dp[i][j][k]表示到达(i,j),序列和为k时,序列的平方和的最小值。

那么很容易得到状态转移方程,对于向右走,有:dp[i][j+1][k+V[i][j+1]]=min(dp[i][j+1][k+V[i][j+1]],dp[i][j][k]+V[i][j+1]*V[i][j+1]),V[i][j]为(i,j)的值,类似地,可得到向下走的状态转移方程。

最终,枚举(n+m-1)*dp[n][m][k]-k^2,0<=k<=59*30,取最小值即为答案。

 

注意dp的初始化,枚举序列A的和的时候,有些和是不会出现的,即有些状态是无法到达的。因此将dp全部初始化为inf,第(1,1)格的值初始化为V[1][1]^2,然后求解各个状态的值。

技术分享
 1 #include <algorithm>
 2 #include <iostream>
 3 #include <cstring>
 4 #include <cstdlib>
 5 #include <cstdio>
 6 #include <vector>
 7 #include <ctime>
 8 #include <queue>
 9 #include <list>
10 #include <set>
11 #include <map>
12 using namespace std;
13 #define inf 0x3f3f3f3f
14 typedef long long LL;
15 
16 int dp[40][40][1800], a[40][40];
17 int main()
18 {
19     int t, n, m;
20     scanf("%d", &t);
21     for(int ca = 1; ca <= t; ca++)
22     {
23         scanf("%d %d", &n, &m);
24         for(int i = 1; i <= n; i++)
25             for(int j = 1; j <= m; j++)
26                 scanf("%d", &a[i][j]);
27         memset(dp, inf, sizeof(dp));
28         dp[0][1][0] = 0;
29         for(int i = 1; i <= n; i++)
30         {
31             for(int j = 1; j <= m; j++)
32             {
33                 for(int k = a[i][j]; k <=59 * 30; k++)
34                 {
35                     if(dp[i-1][j][k-a[i][j]] != inf)
36                         dp[i][j][k]=min(dp[i][j][k],dp[i-1][j][k-a[i][j]]+a[i][j]*a[i][j]);
37                     if(dp[i][j-1][k-a[i][j]] != inf)
38                         dp[i][j][k]=min(dp[i][j][k],dp[i][j-1][k-a[i][j]]+a[i][j]*a[i][j]);
39                 }                
40             }
41         }
42         int res = inf;
43         for(int i = 0; i <= 59 * 30; i++)
44         {
45             if(dp[n][m][i] != inf)
46                 res = min(res, (n+m-1)*dp[n][m][i]-i*i);
47         }
48         printf("Case #%d: %d\n", ca, res);
49     }
50     return 0;
51 }
View Code

 

以上是关于hdu5492_枚举dp的主要内容,如果未能解决你的问题,请参考以下文章

HDU 5492

HDU 5492 Find a path (dp)

hdu 5492 网格图dp

hdu-5492 Find a path(dp)

HDU5492 Find a path[DP 方差]

hdu5492 find the path dp