HDU-5533 Dancing Stars on Me

Posted Kiven#5197

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了HDU-5533 Dancing Stars on Me相关的知识,希望对你有一定的参考价值。

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 1175    Accepted Submission(s): 643

 

Problem Description
The sky was brushed clean by the wind and the stars were cold in a black sky. What a wonderful night. You observed that, sometimes the stars can form a regular polygon in the sky if we connect them properly. You want to record these moments by your smart camera. Of course, you cannot stay awake all night for capturing. So you decide to write a program running on the smart camera to check whether the stars can form a regular polygon and capture these moments automatically.

Formally, a regular polygon is a convex polygon whose angles are all equal and all its sides have the same length. The area of a regular polygon must be nonzero. We say the stars can form a regular polygon if they are exactly the vertices of some regular polygon. To simplify the problem, we project the sky to a two-dimensional plane here, and you just need to check whether the stars can form a regular polygon in this plane.
 

 

Input
The first line contains a integer T indicating the total number of test cases. Each test case begins with an integer n, denoting the number of stars in the sky. Following nlines, each contains 2 integers xi,yi, describe the coordinates of n stars.

1T300
3n100
10000xi,yi10000
All coordinates are distinct.
 

 

Output
For each test case, please output "`YES`" if the stars can form a regular polygon. Otherwise, output "`NO`" (both without quotes).
 

 

Sample Input
3
3
0 0
1 1
1 0
4
0 0
0 1
1 0
1 1
5
0 0
0 1
0 2
2 2
2 0
 
 
Sample Output
NO
YES
NO

 

题意:

求所给点能否组成正n变形。

 

因为给定的点都为整数,故只有可能组成正四边形即正方形。

我们只要判断有多少边==最小边,若结果为n,则YES。

 

附AC代码:

 1 #include<bits/stdc++.h>
 2 using namespace std;
 3 
 4 const int INF=1<<30;
 5 const int MAXN=110; 
 6 
 7 double x[MAXN],y[MAXN];
 8 
 9 double Len(int i,int j){
10     return sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]));
11 }
12 
13 int main(){
14     int t;
15     cin>>t;
16     while(t--){
17         int n;
18         cin>>n;
19         for(int i=1;i<=n;i++){
20             cin>>x[i]>>y[i];
21         }
22         double MIN=INF;
23         for(int i=1;i<=n;i++){
24             for(int j=i+1;j<=n;j++){
25                 MIN=min(Len(i,j),MIN);
26             }
27         }
28         int ans=0;
29         for(int i=1;i<=n;i++){
30             for(int j=i+1;j<=n;j++){
31                 if(Len(i,j)==MIN)
32                 ans++;
33             }
34         }
35         if(ans==n)
36         cout<<"YES"<<endl;
37         else
38         cout<<"NO"<<endl;
39     }
40     return 0;
41 } 

 

以上是关于HDU-5533 Dancing Stars on Me的主要内容,如果未能解决你的问题,请参考以下文章

HDU 5533 Dancing Stars on Me 计算几何瞎暴力

Dancing Stars on Me HDU - 5533

Dancing Stars on Me---hdu5533(判断是否为正多边形)

HDU_5533_Dancing Stars on Me

浅尝TensorFlow on Kubernetes

Dancing Links 专题总结