NEFU 506&&ZOJ 3353 Chess Board (四种构造的高斯消元)

Posted Ritchie丶

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了NEFU 506&&ZOJ 3353 Chess Board (四种构造的高斯消元)相关的知识,希望对你有一定的参考价值。

题目链接

题意:有四种翻转方式,问是否能使得所有棋子都变为0,求最小步数。

题解:依次构造枚举求出最小值即可。

 

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <queue>
#include <vector>
#include <map>
#include <ctime>
using namespace std;
const int inf=0x3f3f3f;
const int maxn=300;
//有equ个方程,var个变元。增广矩阵行数为equ,列数为var+1,分别为0到var
int equ,var;
int a[maxn][maxn]; //增广矩阵
int x[maxn]; //解集
int free_x[maxn];//用来存储自由变元(多解枚举自由变元可以使用)
int free_num;//自由变元的个数
//返回值为-1表示无解,为0是唯一解,否则返回自由变元个数
int gauss()
{
    int max_r,col,k;
    free_num=0;
    for(k=0,col=0; k<equ&&col<var; k++,col++)
    {
        max_r=k;
        for(int i=k+1; i<equ; i++)
            if(abs(a[i][col])>abs(a[max_r][col]))
                max_r=i;
        if(!a[max_r][col])
        {
            k--;
            free_x[free_num++]=col;
            continue;
        }
        if(max_r!=k)
            for(int j=col; j<var+1; j++)
                swap(a[k][j],a[max_r][j]);
        for(int i=k+1; i<equ; i++)
        {
            if(a[i][col])
            {
                for(int j=col; j<var+1; j++)
                    a[i][j]^=a[k][j];
            }
        }
    }
    for(int i=k; i<equ; i++)
        if(a[i][col])
            return -1;
    if(k<var) return var-k;
    for(int i=var-1; i>=0; i--)
    {
        x[i]=a[i][var];
        for(int j=i+1; j<var; j++)
            x[i]^=(a[i][j]&&x[j]);
    }
    return 0;
}
int n,m;
//注意一定要分清左下和右上!!!
void init1()
{
    memset(a,0,sizeof(a));
    memset(x,0,sizeof(x));
    equ=n*m;
    var=n*m;
    for(int i=0; i<n; i++)
        for(int j=0; j<m; j++)
        {
            int t=i*m+j;
            a[t][t]=1;
            if(i>0) a[(i-1)*m+j][t]=1; //
            if(i<(n-1)) a[(i+1)*m+j][t]=1; //
            if(j>0) a[i*m+j-1][t]=1; //
            if(j<(m-1)) a[i*m+j+1][t]=1; //
        }
}
void init2()
{
    memset(a,0,sizeof(a));
    memset(x,0,sizeof(x));
    equ=n*m;
    var=n*m;
    for(int i=0; i<n; i++)
        for(int j=0; j<m; j++)
        {
            int t=i*m+j;
            a[t][t]=1;
            if(i>0) a[(i-1)*m+j][t]=1; ////if(i<n-1) a[(i+1)*m+j][t]=1; //
            if(j>0) a[i*m+j-1][t]=1; //
            if(j<(m-1)) a[i*m+j+1][t]=1; //
            if(i>0&&j>0) a[(i-1)*m+j-1][t]=1; //左上
            //if(i>0&&j<(m-1)) a[(i-1)*m+j+1][t]=1; //右上
            if(i<n-1&&j>0) a[(i+1)*m+j-1][t]=1; //左下
            //if(i<n-1&&j<m-1) a[(i+1)*m+j+1][t]=1; //右下
        }
}
void init3()
{
    memset(a,0,sizeof(a));
    memset(x,0,sizeof(x));
    equ=n*m;
    var=n*m;
    for(int i=0; i<n; i++)
        for(int j=0; j<m; j++)
        {
            int t=i*m+j;
            a[t][t]=1;
            if(i>0) a[(i-1)*m+j][t]=1; //
            if(i<(n-1)) a[(i+1)*m+j][t]=1; //
            if(j>0) a[i*m+j-1][t]=1; //
            if(j<(m-1)) a[i*m+j+1][t]=1; ////if(i>0&&j>0) a[(i-1)*m+j-1][t]=1; //左上
            if(i>0&&j<m-1) a[(i-1)*m+j+1][t]=1; //右上
            //if(i<(n-1)&&j>0) a[(i+1)*m+j-1][t]=1; //左下
            //if(i<n-1&&j<m-1) a[(i+1)*m+j+1][t]=1; //右下
        }
}
void init4()
{
    memset(a,0,sizeof(a));
    memset(x,0,sizeof(x));
    equ=n*m;
    var=n*m;
    for(int i=0; i<n; i++)
        for(int j=0; j<m; j++)
        {
            int t=i*m+j;
            a[t][t]=1;
            if(i>0) a[(i-1)*m+j][t]=1; //
            if(i<(n-1)) a[(i+1)*m+j][t]=1; //
            if(j>0) a[i*m+j-1][t]=1; ////if(j<m-1) a[i*m+j+1][t]=1; ////if(i>0&&j>0) a[(i-1)*m+j-1][t]=1; //左上
            if(i>0&&j<m-1) a[(i-1)*m+j+1][t]=1; //右上
            //if(i<(n-1)&&j>0) a[(i+1)*m+j-1][t]=1; //左下
            if(i<(n-1)&&j<(m-1)) a[(i+1)*m+j+1][t]=1; //右下
        }
}
int solve()
{
    int t=gauss();
    if(t==-1)
    {
        return inf;
    }
    else if(t==0)
    {
        int ans=0;
        for(int i=0; i<n*m; i++)
            ans+=x[i];
        return ans;
    }
    else
    {
        //枚举自由变元
        int ans=0x3f3f3f3f;
        int tot=(1<<t);
        for(int i=0; i<tot; i++)
        {
            int cnt=0;
            for(int j=0; j<t; j++)
            {
                if(i&(1<<j)) //注意不是&&
                {
                    x[free_x[j]]=1;
                    cnt++;
                }
                else x[free_x[j]]=0;
            }
            for(int j=var-t-1; j>=0; j--)
            {
                int idx;
                for(idx=j; idx<var; idx++)
                    if(a[j][idx])
                        break;
                x[idx]=a[j][var];
                for(int l=idx+1; l<var; l++)
                    if(a[j][l])
                        x[idx]^=x[l];
                cnt+=x[idx];
            }
            ans=min(ans,cnt);
        }
        return ans;
    }
}
char data[30][30];
int main()
{
    while(scanf("%d%d",&n,&m)&&n&&m)
    {
        //getchar();
        for(int i=0; i<n; i++)
            cin>>data[i];

        init1();
        for(int i=0; i<n; i++)
            for(int j=0; j<m; j++)
                if(data[i][j]==1) a[i*m+j][n*m]=1;
        int ans1=solve();

        init2();
        for(int i=0; i<n; i++)
            for(int j=0; j<m; j++)
                if(data[i][j]==1) a[i*m+j][n*m]=1;
        int ans2=solve();

        init3();
        for(int i=0; i<n; i++)
            for(int j=0; j<m; j++)
                if(data[i][j]==1) a[i*m+j][n*m]=1;
        int ans3=solve();

        init4();
        for(int i=0; i<n; i++)
            for(int j=0; j<m; j++)
                if(data[i][j]==1) a[i*m+j][n*m]=1;
        int ans4=solve();

        int ans=min(min(ans1,ans2),min(ans3,ans4));
        if(ans==inf) puts("Impossible");
        else
        {
            if(ans==ans1) printf("1 %d\n",ans);
            else if(ans==ans2) printf("2 %d\n",ans);
            else if(ans==ans3) printf("3 %d\n",ans);
            else if(ans==ans4) printf("4 %d\n",ans);
        }
    }
    return 0;
}

 

以上是关于NEFU 506&&ZOJ 3353 Chess Board (四种构造的高斯消元)的主要内容,如果未能解决你的问题,请参考以下文章

[NEFU 数据结构]期末复习& 新网站

[LeetCode&Python] Problem 506. Relative Ranks

nefu 899这也是裸的找

Inviting Friends(hdu3244 &amp;&amp; zoj3187)完全背包+二分

ZOJ 1654--Place the Robots二分匹配 &amp;&amp; 经典建图

ZOJ - 3216:Compositions (DP&矩阵乘法&快速幂)