spark - jdbc升级版数据源

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了spark - jdbc升级版数据源相关的知识,希望对你有一定的参考价值。

参考技术A > 在spark的数据源中,只支持Append, Overwrite, ErrorIfExists, Ignore,这几种模式,但是我们在线上的业务几乎全是需要upsert功能的,就是已存在的数据肯定不能覆盖,在mysql中实现就是采用:`ON DUPLICATE KEY UPDATE`,有没有这样一种实现?官方:不好意思,不提供,dounine:我这有呀,你来用吧。哈哈,为了方便大家的使用我已经把项目打包到maven中央仓库了,为的就是使用快,容易使用。

## 吃土的方案

MysqlClient.scala

```

import java.sql._

import java.time.LocalDate, LocalDateTime

import scala.collection.mutable.ListBuffer

class MysqlClient(jdbcUrl: String)

  private var connection: Connection = null

  val driver = "com.mysql.jdbc.Driver"

  init()

  def init(): Unit =

    if (connection == null || connection.isClosed)

      val split = jdbcUrl.split("\\|")

      Class.forName(driver)

      connection = DriverManager.getConnection(split(0), split(1), split(2))

   

 

  def close(): Unit =

    connection.close()

 

  def execute(sql: String, params: Any*): Unit =

    try

      val statement = connection.prepareStatement(sql)

      this.fillStatement(statement, params: _*)

      statement.executeUpdate

    catch

      case e: SQLException =>

        e.printStackTrace()

   

 

  @throws[SQLException]

  def fillStatement(statement: PreparedStatement, params: Any*): Unit =

    for (i <- 1 until params.length + 1)

      val value: Any = params(i - 1)

      value match

        case s: String => statement.setString(i, value.toString)

        case i: Integer => statement.setInt(i, value.toString.asInstanceOf[Int])

        case b: Boolean => statement.setBoolean(i, value.toString.asInstanceOf[Boolean])

        case ld: LocalDate => statement.setString(i, value.toString)

        case ldt: LocalDateTime => statement.setString(i, value.toString)

        case l: Long => statement.setLong(i, value.toString.asInstanceOf[Long])

        case d: Double => statement.setDouble(i, value.toString.asInstanceOf[Double])

        case f: Float => statement.setFloat(i, value.toString.asInstanceOf[Float])

        case _ => statement.setString(i, value.toString)

     

   

 

  def upsert(query: Query, update: Update, tableName: String): Unit =

    val names = ListBuffer[String]()

    val values = ListBuffer[String]()

    val params = ListBuffer[AnyRef]()

    val updates = ListBuffer[AnyRef]()

    val keysArr = scala.Array(query.values.keys, update.sets.keys, update.incs.keys)

    val valuesArr = scala.Array(update.sets.values, update.incs.values)

    for (i: Int <- 0 until keysArr.length)

      val item = keysArr(i)

      item.foreach

        key =>

          names += s"`$key`"

          values += "?"

       

     

      i match

        case 0 =>

          params.++=(query.values.values)

       

        case 1 | 2 =>

          params.++=(valuesArr(i - 1).toList)

       

     

   

    update.sets.foreach

      item =>

        updates += s" `$item._1` = ? "

        params += item._2

     

   

    update.incs.foreach

      item =>

        updates += s" `$item._1` = `$item._1` + ? "

        params += item._2

     

   

    val sql = s"INSERT INTO `$tableName` ($names.mkString(",")) VALUES($values.mkString(",")) ON DUPLICATE KEY UPDATE $updates.mkString(",")"

    this.execute(sql, params.toArray[AnyRef]: _*)

 



case class Update(sets: Map[String, AnyRef] = Map(), incs: Map[String, AnyRef] = Map())

case class Query(values: Map[String, AnyRef] = Map())

```

吃土的程序

```

val fieldMaps = (row: Row, fields: Array[String]) => fields.map

    field => (field, Option(row.getAs[String](field)).getOrElse(""))

  .toMap

sc.sql(

      s"""select time,count(userid) as pv,count(distinct(userid)) as uv from log group by time""")

      .foreachPartition(item =>

        val props: Properties = PropertiesUtils.properties("mysql")

        val mysqlClient: MysqlClient = new MysqlClient(props.getProperty("jdbcUrl"))

        while (item.hasNext)

          val row: Row = item.next()

          val pv: Long = row.getAs("pv")

          val uv: Long = row.getAs("uv")

          val indicatorMap = Map(

          "pv" -> pv.toString,

          "uv" -> uv.toString

          )

          val update = if (overrideIndicator) //覆盖

            Update(sets = indicatorMap)

          else //upsert

            Update(incs = indicatorMap)

         

          var queryMap = fieldMaps(row,"time".split(","))

          mysqlClient.upsert(

            Query(queryMap),

            update,

            "test"

          )

       

        mysqlClient.close()

      )

```

真的是丑极了,不想看了

## 如今升级为jdbc2之后

依赖 [spark-sql-datasource](https://mvnrepository.com/artifact/com.dounine/spark-sql-datasource)

```

<dependency>

  <groupId>com.dounine</groupId>

  <artifactId>spark-sql-datasource</artifactId>

  <version>1.0.1</version>

</dependency>

```

创建一张测试表

```

CREATE TABLE `test` (

  `id` int(11) NOT NULL AUTO_INCREMENT,

  `time` date NOT NULL,

  `pv` int(255) DEFAULT '0',

  `uv` int(255) DEFAULT '0',

  PRIMARY KEY (`id`),

  UNIQUE KEY `uniq` (`time`) USING BTREE

) ENGINE=InnoDB AUTO_INCREMENT=22 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_bin;

```

程序

```

val spark = SparkSession

      .builder()

      .appName("jdbc2")

      .master("local[*]")

      .getOrCreate()

    val readSchmeas = StructType(

      Array(

        StructField("userid", StringType, nullable = false),

        StructField("time", StringType, nullable = false),

        StructField("indicator", LongType, nullable = false)

      )

    )

    val rdd = spark.sparkContext.parallelize(

      Array(

        Row.fromSeq(Seq("lake", "2019-02-01", 10L)),

        Row.fromSeq(Seq("admin", "2019-02-01", 10L)),

        Row.fromSeq(Seq("admin", "2019-02-01", 11L))

      )

    )

    spark.createDataFrame(rdd, readSchmeas).createTempView("log")

    spark.sql("select time,count(userid) as pv,count(distinct(userid)) as uv from log group by time")

      .write

      .format("org.apache.spark.sql.execution.datasources.jdbc2")

      .options(

        Map(

          "savemode" -> JDBCSaveMode.Update.toString,

          "driver" -> "com.mysql.jdbc.Driver",

          "url" -> "jdbc:mysql://localhost:3306/ttable",

          "user" -> "root",

          "password" -> "root",

          "dbtable" -> "test",

          "useSSL" -> "false",

          "duplicateIncs" -> "pv,uv",

          "showSql" -> "true"

        )

      ).save()

```

实际程序上运行会生成下面的 SQL 语句

```

INSERT INTO test (`time`,`pv`,`uv`)

  VALUES (?,?,?)

  ON DUPLICATE KEY UPDATE `time`=?,`pv`=`pv`+?,`uv`=`uv`+?

```

生成结果

![spark-sql datasource jdbc2 upsert](https://upload-images.jianshu.io/upload_images/9028759-afacd2fc7610a602.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)

## jdbc2新增配置

|format| duplicateIncs | showSql |

|--|--|--|

|org.apache.spark.sql.execution.datasources.jdbc2|upsert 字段|是否打印 SQL|

其他配置与内置`jdbc`数据源一样~~~

以上是关于spark - jdbc升级版数据源的主要内容,如果未能解决你的问题,请参考以下文章

将 spark 应用程序连接到远程 sql 服务器时出现 jdbc 连接超时错误

无法使用 jdbc 将 spark 数据集写入数据库

Spark streaming jdbc 在数据到来时读取流 - 数据源 jdbc 不支持流式读取

Spark SQL for JDBC 从其他数据库获取数据

Spark基础学习笔记28:Spark SQL数据源 - JDBC

Spark上的Hive如何从jdbc读取数据?