python OOP attributeError:对象没有属性
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python OOP attributeError:对象没有属性相关的知识,希望对你有一定的参考价值。
我遇到有关对象属性的问题。如您所见,mnist_network对象具有一些必须在某些方法中使用的属性(属性:train_img,train_res,test_img,test_res)。当我调用函数test_predict(self)时,出现以下错误:AttributeError: 'mnist_network' object has no attribute 'test_img'
。你能解释一下吗?我对使用Python进行OOP相当陌生。我使用Spyder,尝试使用“帮助”来找出属性出了什么问题,但我只得到“没有可用的文档”。所以这没有帮助...
这是我的代码(应该可以预测手写数字):
# import keras and the MNIST dataset
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from keras.utils import np_utils
# import matplotlib to show pictures
import matplotlib.pyplot as plt
# numpy is necessary since keras uses numpy arrays
import numpy as np
class mnist_network():
def __init__(self):
""" load data, create and train model """
# load data
(X_train, y_train), (X_test, y_test) = mnist.load_data()
# flatten 28*28 images to a 784 vector for each image
num_pixels = X_train.shape[1] * X_train.shape[2]
X_train = X_train.reshape((X_train.shape[0], num_pixels)).astype('float32')
X_test = X_test.reshape((X_test.shape[0], num_pixels)).astype('float32')
# normalize inputs from 0-255 to 0-1
X_train = X_train / 255
X_test = X_test / 255
# one hot encode outputs
y_train = np_utils.to_categorical(y_train)
y_test = np_utils.to_categorical(y_test)
num_classes = y_test.shape[1]
# create model
model = Sequential()
model.add(Dense(num_pixels, input_dim=num_pixels, kernel_initializer='normal', activation='relu'))
model.add(Dense(num_classes, kernel_initializer='normal', activation='softmax'))
# Compile model
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
# train the model
model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=10, batch_size=200, verbose=2)
self = model
self.train_img = X_train
self.train_res = y_train
self.test_img = X_test
self.test_res = y_test
def test_all(self):
""" evaluates the success rate using all the test data """
scores = self.evaluate(self.test_img, self.test_res, verbose=0)
print("Baseline Error: %.2f%%" % (100-scores[1]*100))
def predict(self, img, show=False):
""" img has to be a 784 vector """
""" predicts the number in a picture (vector) """
if show:
# show the picture
plt.imshow(img, cmap='Greys')
plt.show()
num_pixels = img.shape[1] * img.shape[2]
# the actual number
res_number = np.argmax(self.predict(img.reshape(-1,num_pixels)), axis = 1)
return res_number[0] # res_number is a list containing one element
def test_predict(self):
""" test a random number from the test part of the data set """
index = random.randrange(0,10000) # there are 10000 images in the test part of the data set
""" the actual result stored in the data set
It's represented as a list of 10 elements one of which being 1, the rest 0 """
num_pixels = self.test_img.shape[1] * self.test_img.shape[2]
correct_res = self.test_res[index].index(1)
predicted_res = np.argmax(self.predict(self.test_img[index].reshape(-1, num_pixels)), axis = 1)
if correct_res != predicted_res:
print("Error in predict ! \
index = ", index, " predicted result = ", predicted_res, " correct result = ", correct_res)
else:
print("alright")
network = mnist_network()
network.test_predict()
因为已将self
(这是对该对象的当前实例的引用)分配给model
,这是Sequential
的实例,而该实例实际上没有属性test_img
。例如,如果您在哪里做:
class mnist_network(Sequential):
def __init__(self):
self = "foo bar"
然后,当您执行instance = mnist_network()
时,实际上将引用内存中保留的位置,该位置保留为在您的实例中显示“ foo bar”的字符串,而不是class mnist_network
的实例。一般来说,您永远不会做类似的事情
self = some_stuff
任何地方。这是没有道理的。我对tensorflow和keras不太熟悉,但是我怀疑您可能想做的事情更多是:
class mnist_network(Sequential):
def __init__(self):
# do stuff....
或者也许您真正想做的是:
class mnist_network:
def __init__(self):
# do stuff
self.model = Sequential()
以上是关于python OOP attributeError:对象没有属性的主要内容,如果未能解决你的问题,请参考以下文章
我遇到错误:AttributeError:'str'对象没有属性'isfloat'
Python - AttributeError:模块'mysql'没有属性'connector'
初学者 Python:AttributeError:'list' 对象没有属性