如何保存使用Tensorflow 1.xx中的.meta检查点模型作为部分的Tensorflow 2.0模型?

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了如何保存使用Tensorflow 1.xx中的.meta检查点模型作为部分的Tensorflow 2.0模型?相关的知识,希望对你有一定的参考价值。

我已使用tensorflow 1.15训练模型并保存为检查点(带有.meta.index.data文件)。

我需要在此图的开头和结尾添加一些其他操作。其中一些操作仅在tensorflow 2.0tensorflow_text 2.0中存在。之后,我想将此模型保存为tensorflow-serving

我试图做的事情:使用tensorflow 2.0,我将其保存为.pb文件,如下所示。

trained_checkpoint_prefix = 'path/to/model'
export_dir = os.path.join('path/to/export', '0')

graph = tf.Graph()
with tf.compat.v1.Session(graph=graph) as sess:
    # Restore from checkpoint
    loader = tf.compat.v1.train.import_meta_graph(trained_checkpoint_prefix + '.meta')
    loader.restore(sess, trained_checkpoint_prefix)

    # Export checkpoint to SavedModel
    builder = tf.compat.v1.saved_model.builder.SavedModelBuilder(export_dir)

    classification_signature = tf.compat.v1.saved_model.signature_def_utils.build_signature_def(
        inputs=
            'token_indices': get_tensor_info('token_indices_ph:0'),
            'token_mask': get_tensor_info('token_mask_ph:0'),
            'y_mask': get_tensor_info('y_mask_ph:0'),
        ,
        outputs='probas': get_tensor_info('ner/Softmax:0'), 'seq_lengths': get_tensor_info('ner/Sum:0'),
        method_name='predict',
    )

    builder.add_meta_graph_and_variables(sess,
                                         [tf.saved_model.TRAINING, tf.saved_model.SERVING],
                                         strip_default_attrs=True, saver=loader,
                                         signature_def_map='predict': classification_signature) # , clear_devices=True)
    builder.save()  

[之后,我创建了一个加载tf.keras.Model模型并执行我需要的所有人员的.pb

import os
from pathlib import Path

import tensorflow as tf
import tensorflow_text as tf_text


class BertPipeline(tf.keras.Model):
    def __init__(self):
        super().__init__()

        vocab_file = Path('path/to/vocab.txt')
        vocab = vocab_file.read_text().split('\n')[:-1]
        self.vocab_table = self.create_table(vocab)

        export_dir = 'path/to/pb/model'
        self.model = tf.saved_model.load(export_dir)

        self.bert_tokenizer = BertTokenizer(
            self.vocab_table,
            max_chars_per_token=15,
                token_out_type=tf.int64
            ,
            lower_case=True,
        )

        self.to_dense = tf_text.keras.layers.ToDense()

    def call(self, texts):
        tokens = self.bert_tokenizer.tokenize(texts)
        tokens = tf.cast(tokens, dtype=tf.int32)

        mask = self.make_mask(tokens)
        token_ids = self.make_token_ids(tokens)

        token_indices = self.to_dense(token_ids)
        token_mask = self.to_dense(tf.ones_like(mask))
        y_mask = self.to_dense(mask)

        res = self.model.signatures['predict'](
            token_indices=token_indices,
            token_mask=token_mask,
            y_mask=y_mask,
        )

        starts_range = tf.range(0, tf.shape(res['seq_lengths'])[0]) * tf.shape(res['probas'])[1]
        row_splits = tf.reshape(
            tf.stack(
                [
                    starts_range,
                    starts_range + res['seq_lengths'],
                ],
                axis=1,
            ),
            [-1],
        )

        row_splits = tf.concat(
            [
                row_splits,
                tf.expand_dims(tf.shape(res['probas'])[0] * tf.shape(res['probas'])[1], 0),
            ],
            axis=0,
        )

        probas = tf.RaggedTensor.from_row_splits(
            tf.reshape(res['probas'], [-1, 2]),
            row_splits,
        )[::2]

        probas

        return probas

    def make_mask(self, tokens):
        masked_suff = tf.concat(
            [
                tf.ones_like(tokens[:, :, :1], dtype=tf.int32),
                tf.zeros_like(tokens[:, :, 1:], dtype=tf.int32),
            ],
            axis=-1,
        )

        joined_mask = self.join_wordpieces(masked_suff)
        return tf.concat(
            [
                tf.zeros_like(joined_mask[:, :1], dtype=tf.int32),
                joined_mask,
                tf.zeros_like(joined_mask[:, :1], dtype=tf.int32),
            ],
            axis=-1,
        )

    def make_token_ids(self, tokens):
        joined_tokens = self.join_wordpieces(tokens)

        return tf.concat(
            [
                tf.fill(
                    [joined_tokens.nrows(), 1],
                    tf.dtypes.cast(
                        self.vocab_table.lookup(tf.constant('[CLS]')),
                        dtype=tf.int32,
                    )
                ),
                self.join_wordpieces(tokens),
                tf.fill(
                    [joined_tokens.nrows(), 1],
                    tf.dtypes.cast(
                        self.vocab_table.lookup(tf.constant('[SEP]')),
                        dtype=tf.int32,
                    )
                ),
            ],
            axis=-1,
        )


    def join_wordpieces(self, wordpieces):
        return tf.RaggedTensor.from_row_splits(
            wordpieces.flat_values, tf.gather(wordpieces.values.row_splits,
                                              wordpieces.row_splits))

    def create_table(self, vocab, num_oov=1):
        init = tf.lookup.KeyValueTensorInitializer(
            vocab,
            tf.range(tf.size(vocab, out_type=tf.int64), dtype=tf.int64),
            key_dtype=tf.string,
            value_dtype=tf.int64)
        return tf.lookup.StaticVocabularyTable(init, num_oov, lookup_key_dtype=tf.string)

当我调用此代码时,它运行良好:

bert_pipeline = BertPipeline()
print(bbert_pipeline(["Some test string", "another string"]))

---
<tf.RaggedTensor [[[0.17896245419979095, 0.8210375308990479], [0.8825045228004456, 0.11749550700187683], [0.9141901731491089, 0.0858098641037941]], [[0.2768123149871826, 0.7231876850128174], [0.9391192197799683, 0.060880810022354126]]]>

但是我不知道如何保存。如果我理解正确,tf.keras.Model请勿将self.modelself.bert_tokenizer视为模型的一部分。如果我呼叫bert_pipeline.summary(),则没有操作:

bert_pipeline.build([])
bert_pipeline.summary()

---
Model: "bert_pipeline_3"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
to_dense (ToDense)           multiple                  0         
=================================================================
Total params: 0
Trainable params: 0
Non-trainable params: 0
_________________________________________________________________

此外,我尝试使用显式tensorflow.compat.v1SessionGraph一起运行,但是在这种情况下,我只是无法正确加载模型。与import tensorflow.compat.v1 as tftensorflow 1.xx样板相同的代码无法初始化某些变量:

# tf.saved_model.load(export_dir) changed to tf.saved_model.load_v2(export_dir) above

import tensorflow.compat.v1 as tf
graph = tf.Graph()
with tf.Session(graph=graph) as sess:
    bert_pipeline = BertPipeline()
    texts = tf.placeholder(tf.string, shape=[None], name='texts')

    res_tensor = bert_pipeline(texts)

    sess.run(tf.tables_initializer())
    sess.run(tf.global_variables_initializer())

    sess.run(res_tensor, feed_dict=texts: ["Some test string", "another string"])

---
FailedPreconditionError                   Traceback (most recent call last)
/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/client/session.py in _do_call(self, fn, *args)
   1364     try:
-> 1365       return fn(*args)
   1366     except errors.OpError as e:

/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/client/session.py in _run_fn(feed_dict, fetch_list, target_list, options, run_metadata)
   1349       return self._call_tf_sessionrun(options, feed_dict, fetch_list,
-> 1350                                       target_list, run_metadata)
   1351 

/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/client/session.py in _call_tf_sessionrun(self, options, feed_dict, fetch_list, target_list, run_metadata)
   1442                                             fetch_list, target_list,
-> 1443                                             run_metadata)
   1444 

FailedPreconditionError: [_Derived_]function_node __inference_pruned_77348 function_node __inference_pruned_77348 Attempting to use uninitialized value bert/encoder/layer_3/attention/self/query/kernel
     [[node bert/encoder/layer_3/attention/self/query/kernel/read]]
     [[bert_pipeline/StatefulPartitionedCall]]

During handling of the above exception, another exception occurred:

FailedPreconditionError                   Traceback (most recent call last)
<ipython-input-15-5a0a45327337> in <module>
     21     sess.run(tf.global_variables_initializer())
     22 
---> 23     sess.run(res_tensor, feed_dict=texts: ["Some test string", "another string"])
     24 
     25 #     print(res)

/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/client/session.py in run(self, fetches, feed_dict, options, run_metadata)
    954     try:
    955       result = self._run(None, fetches, feed_dict, options_ptr,
--> 956                          run_metadata_ptr)
    957       if run_metadata:
    958         proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)

/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/client/session.py in _run(self, handle, fetches, feed_dict, options, run_metadata)
   1178     if final_fetches or final_targets or (handle and feed_dict_tensor):
   1179       results = self._do_run(handle, final_targets, final_fetches,
-> 1180                              feed_dict_tensor, options, run_metadata)
   1181     else:
   1182       results = []

/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/client/session.py in _do_run(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)
   1357     if handle is None:
   1358       return self._do_call(_run_fn, feeds, fetches, targets, options,
-> 1359                            run_metadata)
   1360     else:
   1361       return self._do_call(_prun_fn, handle, feeds, fetches)

/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/client/session.py in _do_call(self, fn, *args)
   1382                     '\nsession_config.graph_options.rewrite_options.'
   1383                     'disable_meta_optimizer = True')
-> 1384       raise type(e)(node_def, op, message)
   1385 
   1386   def _extend_graph(self):
FailedPreconditionError: [_Derived_]  Attempting to use uninitialized value bert/encoder/layer_3/attention/self/query/kernel
     [[node bert/encoder/layer_3/attention/self/query/kernel/read]]
     [[bert_pipeline/StatefulPartitionedCall]]

[请,如果您有一些想法如何解决我保存图形的方法,或者您知道如何做得更好-请告诉我。谢谢!

答案

我解决了。首先,我无法使用tf.keras做到这一点。我使用了与tf v1代码兼容的代码。

import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()

除了我使用.meta.index和bla bla checkpoint时,不使用'.pb'。

我使用的主要内容在此处描述:Tensorflow: How to replace a node in a calculation graph?

我制作了3个不同的图,然后像这部分代码一样将它们合并:

def _build_model(self):
    with tf.Graph().as_default() as g_1:
        self.lookup_table = self._make_lookup_table()

        init_table = tf.initialize_all_tables()

        self.bert_tokenizer = BertTokenizer(
            self.lookup_table,
            max_chars_per_token=15, token_out_type=tf.int64,
            lower_case=True,
        )

        self.texts_ph = tf.placeholder(tf.string, shape=(None,), name="texts_ph")  # input

        words_without_name, tokens_int_64 = self.bert_tokenizer.tokenize(self.texts_ph)
        words = tf.identity(words_without_name, name='tokens')

        tokens = tf.cast(tokens_int_64, dtype=tf.int32)

        mask = self._make_mask(tokens)
        token_ids = self._make_token_ids(tokens)

        self.token_indices = token_ids.to_tensor(default_value=0, name='token_indices')  # output 1
        self.token_mask = tf.ones_like(mask).to_tensor(default_value=0, name='token_mask') # output 2
        self.y_mask = mask.to_tensor(default_value=0, name='y_mask') # output 3

    with tf.Graph().as_default() as g_2:
        sess = tf.Session()
        path_to_model = 'path/to/model'
        self._load_model(sess, path_to_model)

        token_indices_2 = g_2.get_tensor_by_name('token_indices_ph:0'),
        token_mask_2 = g_2.get_tensor_by_name('token_mask_ph:0'),
        y_mask_2 = g_2.get_tensor_by_name('y_mask_ph:0'),

        probas = g_2.get_tensor_by_name('ner/Softmax:0')
        seq_lengths = g_2.get_tensor_by_name('ner/Sum:0')

        exclude_scopes = ('Optimizer', 'learning_rate', 'momentum', 'EMA/BackupVariables')
        all_vars = variables._all_saveable_objects()
        self.vars_to_save = [var for var in all_vars if all(sc not in var.name for sc in exclude_scopes)]
        self.saver = tf.train.Saver(self.vars_to_save)

    with tf.Graph().as_default() as g_3:
        softmax_out = tf.placeholder(dtype=tf.float32, name="softmax_out")
        sum_out = tf.placeholder(dtype=tf.int32, name="sum_out")

        final_probas = tf.identity(self._get_probas(softmax_out, sum_out), name='probas')

    g_1_def = g_1.as_graph_def()
    g_2_def = g_2.as_graph_def()
    g_3_def = g_3.as_graph_def()

    with tf.Graph().as_default() as g_combined:
        self.texts = tf.placeholder(tf.string, shape=(None,), name="texts")

        y1, y2, y3, self.init_table, self.words = tf.import_graph_def(
           g_1_def, input_map="texts_ph:0": self.texts,
           return_elements=["token_indices/GatherV2:0", "token_mask/GatherV2:0", "y_mask/GatherV2:0", 'init_all_tables', 'tokens_1:0'],
           name='',
        )

        z1, z2 = tf.import_graph_def(
            g_2_def, input_map="token_indices_ph:0": y1, "token_mask_ph:0": y2, "y_mask_ph:0": y3,
            return_elements=["ner/Softmax:0", "ner/Sum:0"],
            name='',
        )

        self.probas, = tf.import_graph_def(
            g_3_def, input_map="softmax_out:0": z1, "sum_out:0": z2,
            return_elements=["probas_1:0"],
            name='',
        )

        self.sess = tf.Session(graph=g_combined)
        self.graph = g_combined

        self.sess.run(self.init_table)

        vars_dict_to_save = v.name[:-2]: g_2.get_tensor_by_name(v.name) for v in self.vars_to_save
        self.saver.restore(self.sess, path_to_model)

[您可能会注意到我调用self._load_model(sess, path_to_model)来加载模型,使用所需的变量创建saver,然后使用self.saver.save(sess, path_to_model)再次加载模型。需要首先加载才能读取保存的图并可以访问其张量。其次需要使用g_combined合并图在另一个会话中加载权重。我认为有一种方法可以在不两次从磁盘加载数据的情况下执行此操作,但是它可以正常工作,我不想破坏它:-)。

更重要的是vars_dict_to_save。需要此dict才能在图中的加载权重和张量之间进行映射。

之后,您便拥有了包含所有操作的完整图形,因此可以这样称呼它:

def __call__(self, queries):
    pred, words = self.sess.run(
        [self.probas, self.words],
        feed_dict=
            self.queries: queries
        ,
    )
    return pred, words

请注意__call__方法的实现。它使用我通过合并图创建的会话。

一旦您拥有带有已加载权重的完整图表,就可以轻松导出要投放的图表:

def export(self, export_dir):
    builder = tf.saved_model.builder.SavedModelBuilder(export_dir)

    predict_signature = tf.saved_model.signature_def_utils.build_signature_def(
        inputs=
            'queries': tf.saved_model.utils.build_tensor_info(self.queries),
        ,
        outputs=
            'probs': tf.saved_model.utils.build_tensor_info(self.probas),
            'tokens': tf.saved_model.utils.build_tensor_info(self.words)
        ,
        method_name='predict'
    )

    builder.add_meta_graph_and_variables(
        self.sess,
        [tf.saved_model.SERVING],
        strip_default_attrs=True,
        signature_def_map='predict': predict_signature,
        saver=self.saver,
        main_op=self.init_table,
    )
    builder.save()

有一些重要时刻:-使用与合并图相同的会话。-使用与合并图中的权重相同的保护程序。-如果有需要初始化的表,则添加主main_op

如果能帮助别人,我会很高兴的:-)。对我来说这不是小事,我花了很多时间使它起作用。

P.S。此代码中的BertTokenizer与此类与tensorflow_text稍有不同,但与问题无关。

以上是关于如何保存使用Tensorflow 1.xx中的.meta检查点模型作为部分的Tensorflow 2.0模型?的主要内容,如果未能解决你的问题,请参考以下文章

如何在 C++ 中保存和恢复 TensorFlow 图及其状态?

如何保存Tensorflow中的Tensor参数,保存训练中的中间参数,存储卷积层的数据

如何使用 c++ 在 tensorflow 中保存模型

如何使用 tensorflow 保存 DNN 模型

TensorFlow模型保存和提取方法

如何在tensorflow中使用保存的模型[重复]