如何使用熊猫来加快这个嵌套循环的速度?

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了如何使用熊猫来加快这个嵌套循环的速度?相关的知识,希望对你有一定的参考价值。

我是python和pandas的新手。我正在尝试根据时间戳之间的时差为2270个用户分配新的会话ID。如果时差超过4个小时,我需要一个新的会话ID。否则,它必须保持不变。最后,我希望使用新的会话ID列修改数据框。这是我到目前为止的内容:

Eh_2016["NewSessionID"] = 1 #Initialize 'NewSessionID' column in df with 1
Eh_2016['elapsed'] = datetime.time(0,0,0,0) #Create an empty elapsed to calculate Time diff later
users = Eh_2016['Username'].unique() #find the number of unique Usernames
for user in users: #start of the loop
    idx = Eh_2016.index[Eh_2016.Username == user] #Slice the original df
    temp = Eh_2016[Eh_2016.Username == user] #Create a temp placeholder for the slice
    counter = 1 # Initialize counter for NewSessionIDs
    for i,t in enumerate(temp['Timestamp']): #Looping for each timestamp value
        if i != 0 : 
            temp['elapsed'].iloc[i] = (t - temp['Timestamp'].iloc[i-1]) #Calculate diff btwn timestamps
            if temp['elapsed'].iloc[i] > datetime.timedelta(hours = 4): #If time diff>4
                counter +=1 #Increase counter value
                temp['NewSessionID'].iloc[i]=counter #Assign new counter value as NewSessionID
            else:
                temp['NewSessionID'].iloc[i] = counter #Retain previous sessionID
    Eh_2016.loc[idx,:]= temp #Replace original df with the updated slice

非常感谢您提供有关如何使其更快地运行的帮助!让我知道您是否需要更多详细信息。提前致谢。

编辑:样本DF

        Username               Timestamp  NewSessionID                  Elapsed
126842  1095513 2016-06-30 20:58:30.477             1                 00:00:00
126843  1095513 2016-07-16 07:54:47.986             2  15 days 10:56:17.509000
126844  1095513 2016-07-16 07:54:47.986             2          0 days 00:00:00
126845  1095513 2016-07-16 07:55:10.986             2          0 days 00:00:23
126846  1095513 2016-07-16 07:55:13.456             2   0 days 00:00:02.470000
        ...                     ...           ...                      ...
146920  8641894 2016-08-11 22:26:14.051            31   0 days 04:50:23.415000
146921  8641894 2016-08-11 22:26:14.488            31   0 days 00:00:00.437000
146922  8641894 2016-08-12 20:01:02.419            32   0 days 21:34:47.931000
146923  8641894 2016-08-23 10:19:05.973            33  10 days 14:18:03.554000
146924  8641894 2016-09-25 11:30:35.540            34  33 days 01:11:29.567000
答案

为每个用户过滤整个数据框为O(users*sessions),因此不需要,因为您仍然需要遍历整个对象。

一种更有效的方法将是遍历遍历数据框,并将临时变量(计数器,上一行的位置等)存储在用户索引的单独数据框中。

Eh_2016["NewSessionID"] = 1 #Initialize 'NewSessionID' column in df with 1
Eh_2016['elapsed'] = datetime.time(0,0,0,0) #Create an empty elapsed to calculate Time diff later
# create new dataframe of unique users
users = pd.DataFrame({'Username': Eh_2016['Username'].unique()}).set_index('Username') 
# one column for the previous session looked at for each user
users['Previous'] = -1
# one column for the counter variable
users['Counter'] = 0

# iterate over each row
for index, row in Eh_2016.iterrows(): #start of the loop
    user = row['Username']
    previous = users[user, 'Previous']
    if previous >= 0: # if this is not the first row for this user
        Eh_2016.loc[index, 'elapsed'] = (row['Timestamp'] - Eh_2016.loc[previous, 'Timestamp']) #Calculate diff btwn timestamps
        if Eh_2016.loc[index, 'elapsed'] > datetime.timedelta(hours = 4): #If time diff>4
            users[user,'Counter'] += 1 #Increase counter value
        Eh_2016.loc[index, 'NewSessionID'] = users[user,'Counter'] # Assign new counter value as NewSessionID
        users[user, 'Previous'] = index # remember this row as the latest row for this user

以上是关于如何使用熊猫来加快这个嵌套循环的速度?的主要内容,如果未能解决你的问题,请参考以下文章

如何加快熊猫数据框迭代

包含2个以上列表的列表在循环中运行缓慢我可以使用Thread来加快速度吗?

R摆脱嵌套的for循环

使用熊猫时python中的嵌套循环问题

我可以做些啥来加快这个 SQL 查询的速度?

如何加快嵌套循环? Python