用python中的嵌套结构构建一个带有pandas的数据框

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了用python中的嵌套结构构建一个带有pandas的数据框相关的知识,希望对你有一定的参考价值。

我想用数据集实现机器学习有点过于复杂。我想和大熊猫一起工作,然后在skit-learn中使用一些内置模型。

数据外观在JSON文件中给出,示例如下所示:

{
  "demo_Profile": {
    "sex": "male",
    "age": 98,
    "height": 160,
    "weight": 139,
    "bmi": 5,
    "someinfo1": [
      "some_more_info1"
    ],
    "someinfo2": [
      "some_more_inf2"
    ],
    "someinfo3": [
      "some_more_info3"
    ],
  },
  "event": {
    "info_personal": {
      "info1": 219.59,
      "info2": 129.18,
      "info3": 41.15,
      "info4": 94.19,
    },
    "symptoms": [
      {
        "name": "name1",
        "socrates": {
          "associations": [
            "associations1"
          ],
          "onsetType": "onsetType1",
          "timeCourse": "timeCourse1"
        }
      },
      {
        "name": "name2",
        "socrates": {
          "timeCourse": "timeCourse2"
        }
      },
      {
        "name": "name3",
        "socrates": {
          "onsetType": "onsetType2"
        }
      },
      {
        "name": "name4",
        "socrates": {
          "onsetType": "onsetType3"
        }
      },
      {
        "name": "name5",
        "socrates": {
          "associations": [
            "associations2"
          ]
        }
      }
    ],
    "labs": [
      {
        "name": "name1 ",
        "value": "valuelab"
      }
    ]
  }
}

我想创建一个考虑这种“嵌套数据”的pandas数据框,但我不知道如何构建一个数据框,除了“单个参数”之外还要考虑“嵌套参数”

例如,我不知道如何合并包含“单个参数”的“demo_Profile”和症状,这些症状是相同的单个值的列表,在其他情况下是列表。

有谁知道处理这个问题的方法?

编辑*********

上面显示的JSON只是一个示例,在其他情况下,列表中的值的数量将不同,以及症状的数量。因此,上面显示的示例并非针对每种情况都是固定的。

答案

平整json数据的一种快速简便的方法是使用flatten_json包,可以通过pip安装

pip install flatten_json

我希望你有一个列表,其中包含许多你提供的条目。因此,以下代码将为您提供所需的结果:

import pandas as pd
from flatten_json import flatten

json_data = [{...patient1...}, {patient2...}, ...]

flattened = (flatten(entry) for entry in json_data)
df = pd.DataFrame(flattened)

在展平的数据中,列表条目后缀为数字(我在“实验室”列表中添加了另一个患者的附加条目):

+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| index   demo_Profile_age  demo_Profile_bmi  demo_Profile_height demo_Profile_sex demo_Profile_someinfo1_0 demo_Profile_someinfo2_0 demo_Profile_someinfo3_0  demo_Profile_weight  event_info_personal_info1  event_info_personal_info2  event_info_personal_info3  event_info_personal_info4 event_labs_0_name event_labs_0_value event_labs_1_name event_labs_1_value event_symptoms_0_name event_symptoms_0_socrates_associations_0 event_symptoms_0_socrates_onsetType event_symptoms_0_socrates_timeCourse event_symptoms_1_name event_symptoms_1_socrates_timeCourse event_symptoms_2_name event_symptoms_2_socrates_onsetType event_symptoms_3_name event_symptoms_3_socrates_onsetType event_symptoms_4_name event_symptoms_4_socrates_associations_0 |
+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| 0                98                 5                  160             male          some_more_info1           some_more_inf2          some_more_info3                  139                     219.59                     129.18                      41.15                      94.19            name1            valuelab               NaN                NaN                 name1                            associations1                          onsetType1                          timeCourse1                 name2                          timeCourse2                 name3                          onsetType2                 name4                          onsetType3                 name5                            associations2      |
| 1                98                 5                  160             male          some_more_info1           some_more_inf2          some_more_info3                  139                     219.59                     129.18                      41.15                      94.19            name1            valuelab            name2          valuelabr2                 name1                            associations1                          onsetType1                          timeCourse1                 name2                          timeCourse2                 name3                          onsetType2                 name4                          onsetType3                 name5                            associations2      |
+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+

flatten方法包含用于删除不需要的列或前缀的其他参数。

注意:虽然此方法可以根据需要为您提供展平的DataFrame,但我希望您在将数据集输入机器学习算法时遇到其他问题,具体取决于您的预测目标是什么以及您希望如何将数据编码为功能。

另一答案

考虑一下熊猫的json_normalize。但是,因为甚至有更深的巢,所以考虑分别处理数据,然后与“标准化”列的填充连接在一起。

import json
import pandas as pd
from pandas.io.json import json_normalize

with open('myfile.json', 'r') as f:
    data = json.loads(f.read()) 

final_df = pd.concat([json_normalize(data['demo_Profile']), 
                      json_normalize(data['event']['symptoms']), 
                      json_normalize(data['event']['info_personal']), 
                      json_normalize(data['event']['labs'])], axis=1)

# FLATTEN NESTED LISTS
n_list = ['someinfo1', 'someinfo2', 'someinfo3', 'socrates.associations']

final_df[n_list] = final_df[n_list].apply(lambda col: 
                     col.apply(lambda x: x  if pd.isnull(x) else x[0]))

# FILLING FORWARD
norm_list = ['age', 'bmi', 'height', 'weight', 'sex', 'someinfo1', 'someinfo2', 'someinfo3', 
             'info1', 'info2', 'info3', 'info4', 'name', 'value']

final_df[norm_list] = final_df[norm_list].ffill()  

产量

print(final_df)

#     age  bmi  height   sex        someinfo1       someinfo2        someinfo3  weight   name socrates.associations socrates.onsetType socrates.timeCourse   info1   info2  info3  info4    name     value
# 0  98.0  5.0   160.0  male  some_more_info1  some_more_inf2  some_more_info3   139.0  name1         associations1         onsetType1         timeCourse1  219.59  129.18  41.15  94.19  name1   valuelab
# 1  98.0  5.0   160.0  male  some_more_info1  some_more_inf2  some_more_info3   139.0  name2                   NaN                NaN         timeCourse2  219.59  129.18  41.15  94.19  name1   valuelab
# 2  98.0  5.0   160.0  male  some_more_info1  some_more_inf2  some_more_info3   139.0  name3                   NaN         onsetType2                 NaN  219.59  129.18  41.15  94.19  name1   valuelab
# 3  98.0  5.0   160.0  male  some_more_info1  some_more_inf2  some_more_info3   139.0  name4                   NaN         onsetType3                 NaN  219.59  129.18  41.15  94.19  name1   valuelab
# 4  98.0  5.0   160.0  male  some_more_info1  some_more_inf2  some_more_info3   139.0  name5         associations2                NaN                 NaN  219.59  129.18  41.15  94.19  name1   valuelab

以上是关于用python中的嵌套结构构建一个带有pandas的数据框的主要内容,如果未能解决你的问题,请参考以下文章

构建 MultiIndex pandas DataFrame 嵌套 Python 字典

用 Pandas 数据框中的行填充嵌套字典

带有嵌套字典的 Pandas DataFrame

使用 Pandas 在 Python 中过滤嵌套的 JSON 数据

使用 Pandas 在巨大的 CSV 中解析带有嵌套值的 JSON 列

Python Flatten 用 Pandas 将嵌套字典 JSON 相乘