在多个条件下合并来自多个数据帧的数据
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了在多个条件下合并来自多个数据帧的数据相关的知识,希望对你有一定的参考价值。
我想合并多个数据帧,但仅当密钥匹配且日期范围在df1中的“InitialAdmit”日期范围的90天内时才会合并。我想保留df1中的所有行,并且只合并df2,df3等的其他行,只要它们与键匹配并且在日期范围内。
注意:首先合并dfs然后考虑日期范围条件对我不起作用。我第一次使用这种方法,但有很多条件,合并成功,但后来因为日期范围超出限制,我让脚本删除行。我需要以某种方式保留df1中的所有行。
Python Pandas: Merging data frames on multiple conditions - 这个问题很相似,但似乎合并然后应用条件。我认为更好的方法是应用条件,然后在条件满足时合并。虽然,我愿意接受建议。
DataFrames:
a = {'Key': [100000204, 100000255, 100000271,100000286,100000628],
'InitialAdmit': ['2012-06-04', '2012-05-03', '2012-01-16', '2012-10-26', '2012-02-21'],
'90DayRange': ['2012-09-02', '2012-08-01', '2012-04-15', '2013-01-24', '2012-05-21']
}
df1 = pandas.DataFrame(data=a)
df1
b = {'Key': [100000208, 100000255, 100000723,100000286,100000866],
'InitialAdmit': ['2012-01-22', '2012-06-03', '2012-10-26', '2012-11-26', '2012-05-11'],
}
df2 = pandas.DataFrame(data=b)
df2
c = {'Key': [100000255, 100000255, 100000702,100000221,100000628],
'InitialAdmit': ['2012-06-22', '2012-10-03', '2012-10-26', '2012-11-26', '2012-04-11'],
}
df3 = pandas.DataFrame(data=c)
df3
脚本:
df_NotIncludedRows = pandas.DataFrame()
df_final = pandas.DataFrame()
dfs = [df2] #I plan to add more dataframes so I'm iterating through this list of dfs
for df in dfs: #iterate through each df in dfs
for key in df1["Key"]: #iterate through each key found in column 'Id'
if key in df["Key"]: # find any matching key from df1 in df2 (part of my issue exists here)
if (df["Admit"] >= df1["InitialAdmit"]) | (df["Admit"] <= df1["90DayRange"]):
df_final = pandas.merge(df1,df.loc[:],on='Key',how='left') # my df.loc[:] is a little off i think
else:
df_NotIncludedRows = df_NotIncludedRows.append(df.loc[:]) # same df.loc[:] issue i believe
df_NotIncludedRows
答案
我仍然建议合并然后过滤,这里我们使用布尔索引和combine_first
df=df1.merge(df2,on='Key')
m=(df.InitialAdmit_y>=df.InitialAdmit_x)&(df.InitialAdmit_y<=df.InitialAdmit_x)
df1.set_index('Key').combine_first(df[m].set_index('Key'))
Out[215]:
90DayRange InitialAdmit InitialAdmit_x InitialAdmit_y
Key
100000204 2012-09-02 2012-06-04 NaT NaT
100000255 2012-08-01 2012-05-03 2012-05-03 2012-06-03
100000271 2012-04-15 2012-01-16 NaT NaT
100000286 2013-01-24 2012-10-26 2012-10-26 2012-11-26
100000628 2012-05-21 2012-02-21 NaT NaT
另一答案
考虑reduce
使用左连接进行链合并。下面用3份df2进行演示。此外,下面假设InitialAdmit是数据帧的最后一列。根据需要重新排序。
import pandas
import numpy
from functools import reduce
...
# LIST OF DATAFRAMES WITH SUFFIXING OF INITIALADMIT TO AVOID NAME COLLISION
dfList = [d.rename(columns={'InitialAdmit':'InitialAdmit_' + str(i)})
for i,d in enumerate([df1, df2, df2, df2])]
# USER-DEFINED METHOD CONDITIONING ON LAST COLUMN
def mergefilter(x, y):
tmp = pandas.merge(x, y, on='Key', how='left')
tmp.loc[~(tmp.iloc[:, -1].between(tmp['InitialAdmit_0'], tmp['90DayRange'])),
tmp.columns[-1]] = numpy.nan
return tmp
finaldf = reduce(mergefilter, dfList)
print(finaldf)
# 90DayRange InitialAdmit_0 Key InitialAdmit_1 InitialAdmit_2 InitialAdmit_3
# 0 2012-09-02 2012-06-04 100000204 NaN NaN NaN
# 1 2012-08-01 2012-05-03 100000255 2012-06-03 2012-06-03 2012-06-03
# 2 2012-04-15 2012-01-16 100000271 NaN NaN NaN
# 3 2013-01-24 2012-10-26 100000286 2012-11-26 2012-11-26 2012-11-26
# 4 2012-05-21 2012-02-21 100000628 NaN NaN NaN
以上是关于在多个条件下合并来自多个数据帧的数据的主要内容,如果未能解决你的问题,请参考以下文章
为 pyspark 数据帧的每一行评估多个 if elif 条件
使用 pandas 合并和附加多个 CSV/数据帧的最快方法