如何根据一个数据帧中的列值和R中另一个数据帧的列标题名称有条件地创建新列
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了如何根据一个数据帧中的列值和R中另一个数据帧的列标题名称有条件地创建新列相关的知识,希望对你有一定的参考价值。
我有一个数据框df1
,它有一个名为averageDate
的列,其中包含日期,格式为%Y-%m。
我有另一个数据框df2
,其中大多数列名称是日期值,格式为%Y-%m,这些列中的数据是经济指标的数值。
我想在df1中填充一个新列(在df3
中显示),其中值是在df2中找到的值,其中df`中的averageDate
值与df2中的列名匹配。
我已经成功解决了基于单独数据帧中两列的条件合并以解决先前的问题,但我在这里坚持的是第二个匹配条件是df2
中的列名。
我的数据帧的再现如下所示:
df1 <- structure(list(zipcode = structure(c(1L, 2L, 4L, 3L), .Label = c("10019",
"10027", "20009", "94117"), class = "factor"), averageDate = c("2017-08",
"2017-04", NA, "2015-11")), .Names = c("zipcode", "averageDate"
), row.names = c(NA, -4L), class = c("tbl_df", "tbl", "data.frame"
))
df2 <-structure(list(RegionName = c(20009, 10019, 10027), `2015-01` = c(444500,
1855000, NA), `2015-02` = c(439000, 1715000, NA), `2015-03` = c(437000,
1775000, NA), `2015-04` = c(475000, 1855000, NA), `2015-05` = c(489000,
1860000, NA), `2015-06` = c(489750, 1877500, NA), `2015-07` = c(479900,
1957500, NA), `2015-08` = c(489900, 1950000, NA), `2015-09` = c(5e+05,
1947500, NA), `2015-10` = c(512450, 1958000, NA), `2015-11` = c(503999.5,
1990000, NA), `2015-12` = c(499900, 1995000, NA), `2016-01` = c(499500,
1995000, NA), `2016-02` = c(529900, 1822500, NA), `2016-03` = c(5e+05,
1820000, 872000), `2016-04` = c(5e+05, 1930000, 887000), `2016-05` = c(492500,
1795500, 837000), `2016-06` = c(529000, 1750000, 819000), `2016-07` = c(549000,
1832500, 725800), `2016-08` = c(577000, 1850000, 725000), `2016-09` = c(549900,
1762500, 753500), `2016-10` = c(529000, 1777500, 737900), `2016-11` = c(519000,
1787000, 750000), `2016-12` = c(499000, 1795000, 725800), `2017-01` = c(549000,
1795000, 749000), `2017-02` = c(522450, 1833000, 845000), `2017-03` = c(546950,
1836500, 867250), `2017-04` = c(572247.5, 1849450, 929000), `2017-05` = c(549900,
1850000, 929000), `2017-06` = c(540000, 1875000, 899000), `2017-07` = c(519900,
1895000, 899000), `2017-08` = c(525000, 1849990, 897000), `2017-09` = c(572450,
1795000, 840000), `2017-10` = c(595000, 1795000, 882000), `2017-11` = c(555650,
1825000, 949000), `2017-12` = c(525000, 1799950, 795000), `2018-01` = c(557000,
1925000, 772500)), .Names = c("RegionName", "2015-01", "2015-02",
"2015-03", "2015-04", "2015-05", "2015-06", "2015-07", "2015-08",
"2015-09", "2015-10", "2015-11", "2015-12", "2016-01", "2016-02",
"2016-03", "2016-04", "2016-05", "2016-06", "2016-07", "2016-08",
"2016-09", "2016-10", "2016-11", "2016-12", "2017-01", "2017-02",
"2017-03", "2017-04", "2017-05", "2017-06", "2017-07", "2017-08",
"2017-09", "2017-10", "2017-11", "2017-12", "2018-01"), row.names = c(38L,
82L, 226L), class = "data.frame")
df3 <- structure(list(RegionName = c("10019", "10027", "20009", "94117"
), variable = structure(c(32L, 28L, 11L, NA), .Label = c("2015-01",
"2015-02", "2015-03", "2015-04", "2015-05", "2015-06", "2015-07",
"2015-08", "2015-09", "2015-10", "2015-11", "2015-12", "2016-01",
"2016-02", "2016-03", "2016-04", "2016-05", "2016-06", "2016-07",
"2016-08", "2016-09", "2016-10", "2016-11", "2016-12", "2017-01",
"2017-02", "2017-03", "2017-04", "2017-05", "2017-06", "2017-07",
"2017-08", "2017-09", "2017-10", "2017-11", "2017-12", "2018-01"
), class = "factor"), value = c(1849990, 929000, 503999.5, NA
)), .Names = c("RegionName", "variable", "value"), row.names = c(NA,
-4L), class = "data.frame")
答案
像这样的东西?
require(tidyverse);
left_join(
df1,
df2 %>%
gather(averageDate, Value, 2:ncol(df2)) %>%
rename(zipcode = RegionName) %>%
mutate(zipcode = as.character(zipcode)))
## A tibble: 4 x 3
# zipcode averageDate Value
# <chr> <chr> <dbl>
#1 10019 2017-08 1849990
#2 10027 2017-04 929000
#3 94117 NA NA
#4 20009 2015-11 504000
另一答案
从@Marko的见解
long <-melt(df2, id.vars = "RegionName")
df3 <- merge(long, df1, by.x=c("RegionName", "variable"), by.y=c("zipcode", "averageDate"), all.y=T)
以上是关于如何根据一个数据帧中的列值和R中另一个数据帧的列标题名称有条件地创建新列的主要内容,如果未能解决你的问题,请参考以下文章
当列表值与Pyspark数据帧中的列值的子字符串匹配时,填充新列