Divisors_组合数因子个数
Posted 阿宝的锅锅
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Divisors_组合数因子个数相关的知识,希望对你有一定的参考价值。
Description
Your task in this problem is to determine the number of divisors of Cnk. Just for fun -- or do you need any special reason for such a useful computation?
Input
The input consists of several instances. Each instance consists of a single line containing two integers n and k (0 ≤ k ≤ n ≤ 431), separated by a single space.
Output
For each instance, output a line containing exactly one integer -- the number of distinct divisors of Cnk. For the input instances, this number does not exceed 263 - 1.
Sample Input
5 1 6 3 10 4
Sample Output
2 6 16
【题意】求C(n,m)的质因子的个数。
【定理】设正整数n的所有素因子分解n=p1^a1*p2^a2*p3^a3****ps^as,那么T(n)=(a1+1)*(a2+1)*(a3+1)***(an+1);(求因子的个数的公式)
1.求出N以内素数
2.ei=[N/pi^1]+ [N/pi^2]+ …… + [N/pi^n] 其中[]为取整。即可以 int ei=0;while(N) ei+=(N/=pi);
3.套公式计算了,M=(e1+1)*(e2+1)*……*(en+1)
#include<iostream> #include<stdio.h> #include<string.h> using namespace std; const int N=450; int prime[1000]={2,3,5}; int k=3; long long n,m,cnt[N][N]; void get_prime()//将1000以内的素数存入prime数组; { int flag; int p=2; for(int i=7;i<=1000;i+=p) { flag=0; p=6-p;//巧妙的跳过了3的倍数,提高了效率 for(int j=0;prime[j]*prime[j]<=i;j++) { if(i%prime[j]==0) { flag=1; break; } } if(!flag) prime[k++]=i; } } void init() { memset(cnt,0,sizeof(cnt)); get_prime(); long long tmp,ret; for(int i=2;i<=431;i++) { for(int j=0;prime[j]<=i;j++) { tmp=i; ret=0; while(tmp) { tmp=tmp/prime[j]; ret+=tmp; } cnt[i][prime[j]]=ret;//i的质因子数 } } } int main() { init(); long long ret,ans; while(~scanf("%lld%lld",&n,&m)) { ans=1; for(int i=0;prime[i]<=n;i++) { ret=cnt[n][prime[i]]-cnt[m][prime[i]]-cnt[n-m][prime[i]];//c(n,m)=n!/((n-m)!m!),把对应因子个数相减,我们就得到了c(n,m)分解的结果 ans*=(ret+1); } printf("%lld\n",ans); } return 0; }
以上是关于Divisors_组合数因子个数的主要内容,如果未能解决你的问题,请参考以下文章
HDU 6069 Counting Divisors(唯一分解定理+因子数)
第四场 hdu 6069 Counting Divisors (逆向思维)
hdu-1492 The number of divisors(约数) about Humble Numbers---因子数公式