如何优化一个函数,该函数包含for循环和数据帧中的2000万行
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了如何优化一个函数,该函数包含for循环和数据帧中的2000万行相关的知识,希望对你有一定的参考价值。
我有一个如下所示的熊猫数据框df:
student_id category_id count
1 111 10
2 111 5
3 222 8
4 333 5
5 111 6
同样,我有2000万行。
我想为每个student_id计算评分。例如,让我们考虑一个category_id“ 111”。我们有3个此类的Student_id 1、2和5。student_id 1有10个计数,student_id 2有5个计数,student_id 5有6个计数。category_id的每个student_id的评分是通过以下公式计算的:
(count per student_id / total number of counts per category_id) * 5
对于student_id 1-> 10/21 * 5 = 2.38
对于student_id 2-> 5/21 * 5 = 1.19
对于student_id 5-> 6/21 * 5 = 1.43
下面是我已经要计算的函数:
countPerStudentID = datasetPandas.groupby('student_id').agg(list)
countPerCategoryID = datasetPandas.groupby('category_id').agg(list)
studentIDMap = dict()
def func1(student_id):
if student_id in studentIDMap:
return studentIDMap[student_id]
runningSum = 0
countList = countPerStudentID.loc[student_id, 'count']
for count in countList:
runningSum += count
studentIDMap[student_id] = runningSum
return studentIDMap[student_id]
#Similar to the above function
categoryIDMap = dict()
def func2(category_id):
if category_id in categoryIDMap:
return categoryIDMap[category_id]
runningSum = 0
countList = countPerCategoryID.loc[category_id, 'count']
for count in countList:
runningSum += count
categoryIDMap[category_id] = runningSum
return categoryIDMap[category_id]
最后我从下面调用这两个函数:
#Calculating rating category-wise
rating = []
for index, row in df.iterrows():
totalCountPerCategoryID = func1(row['category_id'])
totalCountPerStudentID = func2(row['student_id'])
rating.append((totalCountPerStudentID / totalCountPerCategoryID) * 5)
df['rating'] = rating
必填输出:
student_id category_id count rating
1 111 10 2.38
2 111 5 1.19
3 222 8 5
4 333 5 5
5 111 6 1.43
由于数据量巨大,运行该程序需要大量时间。我想知道如何优化此计算
提前感谢
答案
您不需要循环,这是groupby
情况:
df['rating'] = df['count']/df.groupby('category_id')['count'].transform('sum') * 5
输出:
student_id category_id count rating
0 1 111 10 2.380952
1 2 111 5 1.190476
2 3 222 8 5.000000
3 4 333 5 5.000000
4 5 111 6 1.428571
另一答案
好上帝,请不要使用iterrows
和append
,甚至请不要使用together。难怪您的表现令人抓狂。对于pandas
,iterrows
应该是不得已的选择。
您应该可以使用向量化方法来实现:
>>> df['rating'] = df['count'].div(df.groupby('category_id')['count'].transform(sum)).mul(5)
>>> df
student_id category_id count rating
0 1 111 10 2.380952
1 2 111 5 1.190476
2 3 222 8 5.000000
3 4 333 5 5.000000
4 5 111 6 1.428571
以上是关于如何优化一个函数,该函数包含for循环和数据帧中的2000万行的主要内容,如果未能解决你的问题,请参考以下文章
如何使用 spark.read.jdbc 读取不同 Pyspark 数据帧中的多个文件