获取Pandas df的子集,其中多个列匹配来自另一个df的值

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了获取Pandas df的子集,其中多个列匹配来自另一个df的值相关的知识,希望对你有一定的参考价值。

我有两个带有多索引的数据帧,如下所示:

df1

pd.DataFrame({'observation': {('foo', '2017-04-16'): 'green',
  ('bar', '2017-04-25'): 'red',
  ('zap', '2017-04-16'): 'red',
  ('zip', '2017-04-25'): 'blue',
  ('zip', '2017-04-16'): 'white'},
 'observation': {('zap', '2017-04-16'): np.nan,
  ('bar', '2017-04-27'): 'white',
  ('foo', '2017-05-16'): np.nan,
  ('foo', '2017-04-25'): 'red',
  ('zip', '2017-08-16'): 'red'}})

df2

pd.DataFrame({'foo': {('00', '08'): '0.0',
  ('01', '08'): '0.0',
  ('01', '08'): '0.0',
  ('00', '08'): '1.0',
  ('03', '08'): '1.0',
  ('06', '08'): '0.0',
  ('00', '08'): '1.0',
  ('00', '08'): '1.0',
  ('00', '08'): '0.0',
  ('02', '08'): '0.0'},
 'client_id': {('00', '08'): '1.0',
  ('01', '08'): '1.0',
  ('01', '08'): '1.0',
  ('00', '08'): '1.0',
  ('03', '08'): '1.0',
  ('06', '08'): '1.0',
  ('00', '08'): '1.0',
  ('00', '08'): '1.0',
  ('00', '08'): '1.0',
  ('02', '08'): '1.0'},
 'execution_date': {('00', '08'): '2019-01-09',
  ('01', '08'): '2019-01-09',
  ('01', '08'): '2019-01-09',
  ('00', '08'): '2019-01-09',
  ('03', '08'): '2019-01-09',
  ('06', '08'): '2019-01-09',
  ('00', '08'): '2019-01-09',
  ('00', '08'): '2019-01-09',
  ('00', '08'): '2019-01-09',
  ('02', '08'): '2019-01-09'},
 'del': {('00', '08'): '0.0',
  ('01', '08'): '0.0',
  ('01', '08'): '0.0',
  ('00', '08'): '0.0',
  ('03', '08'): '0.0',
  ('06', '08'): '0.0',
  ('00', '08'): '0.0',
  ('00', '08'): '0.0',
  ('00', '08'): '0.0',
  ('02', '08'): '0.0'},
 'act': {('00', '08'): '11',
  ('01', '08'): '03',
  ('01', '08'): '06',
  ('00', '08'): '07',
  ('03', '08'): '07',
  ('06', '08'): '11',
  ('00', '08'): '28',
  ('00', '08'): '08',
  ('00', '08'): '14',
  ('02', '08'): '26'},
 'obs': {('00', '08'): '02',
  ('01', '08'): '02',
  ('01', '08'): '02',
  ('00', '08'): '02',
  ('03', '08'): '02',
  ('06', '08'): '02',
  ('00', '08'): '02',
  ('00', '08'): '02',
  ('00', '08'): '02',
  ('02', '08'): '02'}})

两者的大小不同,并且值并不总是重叠,但在df1中找到的每个索引对都在df2中。我想要做的是用df2中的observation值更新df1中的观察颜色,无论它匹配在哪里。

换句话说,我想基于多索引进行相当于内连接的操作,然后用df2中的值覆盖df1中observation中的值。但有没有办法一步完成,使用loc /索引? (这是一个索引问题,但如果有办法用reset_index()来解决它,那也没关系。)

期望的输出:

        obs
00  04  30
    08  02
    09  16
    10  26
    16  26
01  01  30
    07  16
02  08  02
03  13  26
07  15  26
答案

如果我理解正确,你可以这样做:

df2 = pd.DataFrame({'observation': {('foo', '2017-04-16'): 'green',
  ('bar', '2017-04-25'): 'red',
  ('zap', '2017-04-16'): 'red',
  ('zip', '2017-04-25'): 'blue',
  ('zip', '2017-04-16'): 'white'},
 'observation': {('zap', '2017-04-16'): 'yellow',
  ('bar', '2017-04-27'): 'white',
  ('foo', '2017-05-16'): 'black',
  ('foo', '2017-04-25'): 'red',
  ('zip', '2017-08-16'): 'red'}})

df['observation'] = df.index.map(dict(zip(df2.index, df2.observation)))

产量

               observation
bar 2017-04-27       white
foo 2017-04-25         red
    2017-05-16       black
zap 2017-04-16      yellow
zip 2017-08-16         red

以上是关于获取Pandas df的子集,其中多个列匹配来自另一个df的值的主要内容,如果未能解决你的问题,请参考以下文章

Pandas - 匹配来自两个数据帧的两列并在 df1 中创建新列

在 Pandas 中重命名多个列

Pandas 中具有 NaN 值的子集列

R:基于多个条件的两个数据帧的子集

DataFrame 的 Pandas 子集,每个类具有固定数量的值 [重复]

pandas dataframe:如何根据列的值聚合行的子集