在r中将多个列从字符转换为数字格式

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了在r中将多个列从字符转换为数字格式相关的知识,希望对你有一定的参考价值。

将数据框中的多个列从字符转换为数字格式的最有效方法是什么?

我有一个名为DF的数据框,包含所有字符变量。

我想做点什么

for (i in names(DF){
    DF$i <- as.numeric(DF$i)
}

谢谢

答案

你可以试试

DF <- data.frame("a" = as.character(0:5),
                 "b" = paste(0:5, ".1", sep = ""),
                 "c" = letters[1:6],
                 stringsAsFactors = FALSE)

# Check columns classes
sapply(DF, class)

#           a           b           c 
# "character" "character" "character" 

cols.num <- c("a","b")
DF[cols.num] <- sapply(DF[cols.num],as.numeric)
sapply(DF, class)

#          a           b           c 
#  "numeric"   "numeric" "character"
另一答案

如果您已经使用了tidyverse,根据具体情况,有一些解决方案:

library(dplyr)
library(magrittr)

# solution
dataset %<>% mutate_if(is.character,as.numeric)

# to test
df <- data.frame(
  x1 = c('1','2','3'),
  x2 = c('4','5','6'),
  x3 = c('1','a','b'), # vector with alpha characters
  stringsAsFactors = F)

# display starting structure
df %>% str()

将所有字符向量转换为数字(如果不是数字,可能会失败)

df %>%
  select(-x3) %>% # this removes the alpha column if all your character columns need converted to numeric
  mutate_if(is.character,as.numeric) %>%
  str()

检查是否可以转换每列。这可以是匿名函数。它检查as.numeric是否返回NA。它还检查它是否是一个忽略因子的字符向量。它还会抑制警告,因为您知道将会故意引入NAs并在以后检查。

numericcharacters <- function(x) {
  !any(is.na(suppressWarnings(as.numeric(x)))) & is.character(x)
}
df %>% 
  mutate_if(numericcharacters,as.numeric) %>%
  str()

如果要转换特定的命名列,则mutate_at更好。

df %>% mutate_at('x1',as.numeric) %>% str()
另一答案

您可以使用列索引:data_set[,1:9] <- sapply(dataset[,1:9],as.character)

另一答案

我想我明白了。这就是我所做的(也许不是最优雅的解决方案 - 关于如何实现这一点的建议非常受欢迎)

#names of columns in data frame
cols <- names(DF)
# character variables
cols.char <- c("fx_code","date")
#numeric variables
cols.num <- cols[!cols %in% cols.char]

DF.char <- DF[cols.char]
DF.num <- as.data.frame(lapply(DF[cols.num],as.numeric))
DF2 <- cbind(DF.char, DF.num)
另一答案

我意识到这是一个旧线程,但想发布一个类似于你的函数请求的解决方案(只是遇到了类似的问题,我试图将整个表格格式化为百分比标签)。

假设您有一个要转换的包含5个字符列的df。首先,我创建一个包含我想要操作的列名称的表:

col_to_convert <- data.frame(nrow = 1:5
                            ,col = c("col1","col2","col3","col4","col5"))

for (i in 1:max(cal_to_convert$row))
  {
    colname <- col_to_convert$col[i]
    colnum <- which(colnames(df) == colname)
        for (j in 1:nrow(df))
          {
           df[j,colnum] <- as.numericdf(df[j,colnum])
          }
  }

这对于大型表来说并不理想,因为它逐个单元格,但它可以完成工作。

另一答案

你可以使用来自hablar包的转换:

library(dplyr)
library(hablar)

# Sample df (stolen from the solution by Luca Braglia)
df <- tibble("a" = as.character(0:5),
                 "b" = paste(0:5, ".1", sep = ""),
                 "c" = letters[1:6])

# insert variable names in num()
df %>% convert(num(a, b))

哪个给你:

# A tibble: 6 x 3
      a     b c    
  <dbl> <dbl> <chr>
1    0. 0.100 a    
2    1. 1.10  b    
3    2. 2.10  c    
4    3. 3.10  d    
5    4. 4.10  e    
6    5. 5.10  f   

或者如果你很懒,让hablar的retype()猜测正确的数据类型:

df %>% retype()

这给你:

# A tibble: 6 x 3
      a     b c    
  <int> <dbl> <chr>
1     0 0.100 a    
2     1 1.10  b    
3     2 2.10  c    
4     3 3.10  d    
5     4 4.10  e    
6     5 5.10  f   
另一答案

来自ARobertson的这个例子是我在这里看到的最有效的。我用它将整数转换为数字。工作就像我需要它,不需要循环或长代码。

library(dplyr)
library(magrittr)

solution

dataset %<>% mutate_if(is.integer,as.numeric)
另一答案

像这样?

DF <- data.frame("a" = as.character(0:5),
             "b" = paste(0:5, ".1", sep = ""),
             "c" = paste(10:15),
             stringsAsFactors = FALSE)

DF <- apply(DF, 2, as.numeric)

如果数据框中有“真实”字符,如'a''b''c',我建议从davsjob回答。

以上是关于在r中将多个列从字符转换为数字格式的主要内容,如果未能解决你的问题,请参考以下文章

将R data.frame中的几列从整数转换为数字

如何在 PySpark 1.6 中将 DataFrame 列从字符串转换为浮点/双精度?

dbReadTable 将日期列从 SQL 数据库强制转换为字符

在填充的数据表中将 datetime 列从 utc 转换为本地时间

在R中将完整年龄从字符转换为数字

在R中将日期转换为特定格式的字符