[51NOD1119]机器人走方格 V2(dp,Lucas定理)

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[51NOD1119]机器人走方格 V2(dp,Lucas定理)相关的知识,希望对你有一定的参考价值。

题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1119

题意:中文题面。

很容易知道式子dp(i,j)=dp(i-1,j)+dp(i,j-1),又知道从左上到右下一定是n+m-2步,打个表出来看m=1或n=1的时候结果是n或者m,m=2的时候结果是3、6、10。。。

猜想结果是C(n+m-2,k),带入值把k求出来,k是和n有关的,k=n-1。

所以结果是C(n+m-2,n-1)。大组合数要对素数取模,结果可以用lucas得到。

  1 /*
  2 ━━━━━┒ギリギリ♂ eye!
  3 ┓┏┓┏┓┃キリキリ♂ mind!
  4 ┛┗┛┗┛┃\○/
  5 ┓┏┓┏┓┃ /
  6 ┛┗┛┗┛┃ノ)
  7 ┓┏┓┏┓┃
  8 ┛┗┛┗┛┃
  9 ┓┏┓┏┓┃
 10 ┛┗┛┗┛┃
 11 ┓┏┓┏┓┃
 12 ┛┗┛┗┛┃
 13 ┓┏┓┏┓┃
 14 ┃┃┃┃┃┃
 15 ┻┻┻┻┻┻
 16 */
 17 #include <algorithm>
 18 #include <iostream>
 19 #include <iomanip>
 20 #include <cstring>
 21 #include <climits>
 22 #include <complex>
 23 #include <fstream>
 24 #include <cassert>
 25 #include <cstdio>
 26 #include <bitset>
 27 #include <vector>
 28 #include <deque>
 29 #include <queue>
 30 #include <stack>
 31 #include <ctime>
 32 #include <set>
 33 #include <map>
 34 #include <cmath>
 35 using namespace std;
 36 #define fr first
 37 #define sc second
 38 #define cl clear
 39 #define BUG puts("here!!!")
 40 #define W(a) while(a--)
 41 #define pb(a) push_back(a)
 42 #define Rint(a) scanf("%d", &a)
 43 #define Rll(a) scanf("%I64d", &a)
 44 #define Rs(a) scanf("%s", a)
 45 #define Cin(a) cin >> a
 46 #define FRead() freopen("in", "r", stdin)
 47 #define FWrite() freopen("out", "w", stdout)
 48 #define Rep(i, len) for(int i = 0; i < (len); i++)
 49 #define For(i, a, len) for(int i = (a); i < (len); i++)
 50 #define Cls(a) memset((a), 0, sizeof(a))
 51 #define Clr(a, x) memset((a), (x), sizeof(a))
 52 #define Full(a) memset((a), 0x7f7f7f, sizeof(a))
 53 #define lrt rt << 1
 54 #define rrt rt << 1 | 1
 55 #define pi 3.14159265359
 56 #define RT return
 57 #define lowbit(x) x & (-x)
 58 #define onecnt(x) __builtin_popcount(x)
 59 typedef long long LL;
 60 typedef long double LD;
 61 typedef unsigned long long ULL;
 62 typedef pair<int, int> pii;
 63 typedef pair<string, int> psi;
 64 typedef pair<LL, LL> pll;
 65 typedef map<string, int> msi;
 66 typedef vector<int> vi;
 67 typedef vector<LL> vl;
 68 typedef vector<vl> vvl;
 69 typedef vector<bool> vb;
 70 
 71 LL  n, m;
 72 LL p = 1e9+7;
 73 
 74 LL exgcd(LL a,LL b,LL &x,LL &y) {
 75     if(b == 0) {
 76         x=1;
 77         y=0;
 78         return a;
 79     }
 80     LL ret = exgcd(b, a % b, y, x);
 81     y -= a / b * x;
 82     return ret;
 83 }
 84 
 85 LL inv(LL a,int m) {
 86     LL d, x, y, t = LL(m);
 87     d = exgcd(a, t, x, y);
 88     if(d == 1) return (x % t + t) % t;
 89     return -1;
 90 }
 91 
 92 LL Cm(LL n, LL m, LL p) {
 93     LL a = 1, b = 1;
 94     if(m > n) return 0;
 95     while(m) {
 96         a=(a*n)%p;
 97         b=(b*m)%p;
 98         m--;
 99         n--;
100     }
101     return LL(a) * inv(b, p) % p;
102 }
103 
104 int Lucas(LL n, LL m, LL p) {
105     if(m == 0) return 1;
106     return LL(Cm(n%p, m%p, p)) * LL(Lucas(n/p, m/p, p)) % p;
107 }
108 
109 int main() {
110     // FRead();
111     while(cin >> n >> m) {
112         n--; m--;
113         cout << Lucas(n+m, n, p);
114     }
115     RT 0;
116 }

 

以上是关于[51NOD1119]机器人走方格 V2(dp,Lucas定理)的主要内容,如果未能解决你的问题,请参考以下文章

51 Nod 1119

51nod 1119 机器人走方格 V2 (组合数学+逆元)

51Nod 1119 机器人走方格 V2 组合数学 费马小定理

51nod 1119 组合数,逆元

(DP)51NOD 1118 机器人走方格

51nod 1118 机器人走方格 (小数据用dp)