后缀数组

Posted cdcq(本博客废弃!现用博客:https://www.cn

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了后缀数组相关的知识,希望对你有一定的参考价值。

先说后缀是啥:后缀就是一个串s从第s[i]一直到串尾就是这个串的一个后缀,记作suffix[i]

举个栗子:aacbds的后缀分别为aacbds,acbds,cbds,ds,ds,s(这是回音你懂吗 是回音你懂吗 回音你懂吗 音你懂吗 你懂吗 懂吗 吗)

后缀数组实质就是给每个后缀排个序

比如上面内个串(aacbds,不是回音内个),它的后缀数组就是{1,2,4,3,5,6}

把每个后缀一个一个拿出来排太慢,会T掉,这个时候就要用到强大的倍增算法

倍增求后缀数组:

本质就是从1开始倍增一个l,把rank[i]和rank[i+l]看做是一个长度为2的串(如果i+l>=n呢么rank[i+l]=0),给这个长度为2的串排下序,在根据这次拍的序继续倍增然后继续排

为什么呐,因为字符串排序是从前往后优先级逐渐递减,内个长度为2的串就相当于把一个串拆卡,拆开的部分的名次前面已经求出来了(因为倍增的长度依次*2,所以从中间拆两半拆出来的名次前面一定求过),而且内个长度为2的串是个串,所以优先级也是前面的大(如果看不懂可以自己画下图,或者直接看内个超级经典的图(基本上有关后缀数组的教程都有内个图,是国家集训队论文的图))

排内个长度为2的串一般用桶排序,非常方便

 下面是加上注释的代码,我的代码缩行了,而且用了一些省略的写法,看不懂的同学可以去网上搜索其它版本的代码

 1 int n;  char s[1100];
 2 int rank[1100],height[1100];
 3 int cnt[1100],cnt_rank[1100];//
 4 int rank1[1100],rank2[1100];//要拼成长度为2的串的两个名次
 5 int SA[1100],temp_SA[1100];//表示rank[i]是从下标为几的字符开始的
 6 void get_suffix_rank(){
 7     memset(cnt,0,sizeof(cnt));
 8     for(int i=0;i<n;i++)  cnt[s[i]]++;//计数
 9     for(int i=1;i<=210;i++)  cnt[i]+=cnt[i-1];//把名次堆起来
10     //因为这个版本的名次是堆的,所以a,a,b,b,c的名次分别是1,1,3,3,4
11     for(int i=0;i<n;i++)  rank[i]=cnt[s[i]]-1;//因为搞了个\'$\'所以要-1让\'$\'的名次为0
12     for(int l=1;l<n;l*=2){//倍增长度
13         for(int i=0;i<n;i++){  rank1[i]=rank[i];  rank2[i]=(i+l<n) ? rank[i+l] : 0;}//两个名次拼成一个长度为2的串
14         //下面是基数排序,因为长度为2所以直接分成两个写
15         memset(cnt_rank,0,sizeof(cnt_rank));
16         for(int i=0;i<n;i++)  cnt_rank[rank2[i]]++;
17         for(int i=1;i<n;i++)  cnt_rank[i]+=cnt_rank[i-1];
18         for(int i=n-1;i>=0;i--)  temp_SA[--cnt_rank[rank2[i]]]=i;//注意这里是n-1到0
19         memset(cnt_rank,0,sizeof(cnt_rank));
20         for(int i=0;i<n;i++)  cnt_rank[rank1[i]]++;
21         for(int i=1;i<n;i++)  cnt_rank[i]+=cnt_rank[i-1];
22         for(int i=n-1;i>=0;i--)  SA[--cnt_rank[rank1[temp_SA[i]]]]=temp_SA[i];//和上一个相比就是把i换成了temp_SA
23         rank[SA[0]]=0;
24         for(int i=1;i<n;i++){
25             rank[SA[i]]=rank[SA[i-1]];
26             rank[SA[i]]+=(rank1[SA[i]]!=rank1[SA[i-1]] || rank2[SA[i]]!=rank2[SA[i-1]]);
27         }
28     }
29 }
30 
31 int main(){//freopen("ddd.in","r",stdin);
32     scanf("%s",&s);  n=strlen(s);  s[n++]=\'$\';//最后要搞个这个东西,防止在倍增过程中出现重复的(比如说a要比a$小)
View Code

还有一种叫做DC3的算法,复杂度更优,然而我并不会一。一,有兴趣的同学可以去网上搜索,在OI里倍增一般够用了,而且倍增简单得多 

然而只是求出后缀数组一般没什么卵用,更多的时候要用到一个叫做height的非常强大的数组

height里面存的是相邻两个后缀的LCP,即最长公共前缀

怎么求呐:

你也可以把每相邻两个后缀从头比较,不会酱紫太慢,会T掉

可以像kmp那样搞,根据前面求出来的height直接跳过不用对比的地方,直接从上一个height开始比

怎么证明我太弱不会,如果哪天我懂了会来补上去

这是代码:

1 void get_height(){
2     int _l=0;
3     for(int i=0;i<n;i++)if(rank[i]){
4         int j=SA[rank[i]-1];
5         while(i+_l<n && j+_l<n && s[i+_l]==s[j+_l])  _l++;
6         height[rank[i]]=_l;
7         _l-=(_l>0);//因为往后推了一位,所以要-1
8     }
9 }
View Code

后缀数组还有很多很棒的应用,这个会另开一篇

刚学后缀数组的时候会觉得很难,然而多看几遍,照着标程写的同时一步一步理解,时间长了后缀数组就和线段树一样不过是随手写出来的小工具而已

以上是关于后缀数组的主要内容,如果未能解决你的问题,请参考以下文章

VSCode自定义代码片段—— 数组的响应式方法

VSCode自定义代码片段10—— 数组的响应式方法

Sublime Text3自定义代码片段

后缀数组代码详解

●后缀数组○十三个例题

初学后缀数组记录(然而并不是很会。。&&很水。。)