dwa 设置多个目标点,倒车设计

Posted Yang-hao

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了dwa 设置多个目标点,倒车设计相关的知识,希望对你有一定的参考价值。

参考链接: https://blog.csdn.net/peakzuo/article/details/86487923   原理分析

                   https://blog.csdn.net/aihuo7077/article/details/101361499   python代码参考

 

简单修改后的代码如下:

"""
version1.1
Mobile robot motion planning sample with Dynamic Window Approach
"""

import math
import numpy as np
import matplotlib.pyplot as plt

show_animation = True # real time drawing
start = 0 # go through point

class Config(object):
"""
Parameters used for simulation
"""

def __init__(self):
# robot parameter
self.max_speed = 2.0 # [m/s] # max v
# self.min_speed = -0.5 # [m/s] # min v Set to reverse
self.min_speed = -2.0 # [m/s] # min v Set to can not reverse
self.max_yawrate = 40.0 * math.pi / 180.0 # [rad/s] # max angle speed
self.max_accel = 0.2 # [m/ss] # max a
self.max_dyawrate = 40.0 * math.pi / 180.0 # [rad/ss] # max yaw a
self.v_reso = 0.01 # [m/s] Speed resolution
self.yawrate_reso = 0.1 * math.pi / 180.0 # [rad/s] yaw Speed resolution
self.dt = 0.1 # [s] # sampling time T
self.predict_time = 3.0 # [s] # Three seconds predict
self.to_goal_cost_gain = 1.0 # Target cost gain
self.speed_cost_gain = 1.0 # Target cost reduction
self.robot_radius = 1.0 # [m] # robor radius


def motion(x, u, dt):
"""
:param x: positon
:param u: (w, v)
:param dt: time
:return:
"""
# The velocity updating formula is simple, and the vehicle displacement changes greatly in a very short time
#
x[0] += u[0] * math.cos(x[2]) * dt # x
x[1] += u[0] * math.sin(x[2]) * dt # y
x[2] += u[1] * dt # heading
x[3] = u[0] # v
x[4] = u[1] # w
# print(x)

return x


def calc_dynamic_window(x, config, start):
"""

"""
# if start == 1:
# config.max_speed == -1.4

# max_v, min_v
vs = [config.min_speed, config.max_speed,
-config.max_yawrate, config.max_yawrate]

# max_v, min_v
vd = [x[3] - config.max_accel * config.dt,
x[3] + config.max_accel * config.dt,
x[4] - config.max_dyawrate * config.dt,
x[4] + config.max_dyawrate * config.dt]
# print(Vs, Vd)

#
vr = [max(vs[0], vd[0]), min(vs[1], vd[1]),
max(vs[2], vd[2]), min(vs[3], vd[3])]
# if start == 1:
# print(vr)
return vr


def calc_trajectory(x_init, v, w, config):
"""
Predict trajectory in 3 seconds
:param x_init:postion space
:param v:v
:param w:w
:param config:
:return: trajectory point
"""
x = np.array(x_init)
trajectory = np.array(x)
time = 0
while time <= config.predict_time:
x = motion(x, [v, w], config.dt)
trajectory = np.vstack((trajectory, x)) # vertical
time += config.dt

# print(trajectory)
return trajectory


def calc_to_goal_cost(trajectory, goal, config):
"""
Calculate the cost from trajectory to target point
:param trajectory:
:param goal:
:param config:
:return: Euclidean distance from track to target point
"""
# calc to goal cost. It is 2D norm.

dx = goal[0] - trajectory[-1, 0]
dy = goal[1] - trajectory[-1, 1]
goal_dis = math.sqrt(dx ** 2 + dy ** 2)
cost = config.to_goal_cost_gain * goal_dis

return cost


def calc_obstacle_cost(traj, ob, config):
"""
min Euclidean distance from track to target point dist(v,w)
:param traj:
:param ob:
:param config:
:return:
"""
# calc obstacle cost inf: collision 0:free

min_r = float("inf") #

for ii in range(0, len(traj[:, 1])):
for i in range(len(ob[:, 0])):
ox = ob[i, 0]
oy = ob[i, 1]
dx = traj[ii, 0] - ox
dy = traj[ii, 1] - oy

r = math.sqrt(dx ** 2 + dy ** 2)
if r <= config.robot_radius:
return float("Inf") # collision

if min_r >= r:
min_r = r

return 1.0 / min_r #


def calc_final_input(x, u, vr, config, goal, ob):
"""

:param x:
:param u:
:param vr:
:param config:
:param goal:
:param ob:
:return:
"""
x_init = x[:]
min_cost = 10000.0
min_u = u

best_trajectory = np.array([x])

# evaluate all trajectory with sampled input in dynamic window
# v,w
for v in np.arange(vr[0], vr[1], config.v_reso):
for w in np.arange(vr[2], vr[3], config.yawrate_reso):

trajectory = calc_trajectory(x_init, v, w, config)

# calc cost
to_goal_cost = calc_to_goal_cost(trajectory, goal, config)
speed_cost = config.speed_cost_gain * (config.max_speed - trajectory[-1, 3])
ob_cost = calc_obstacle_cost(trajectory, ob, config)
# print(ob_cost)

#
#
final_cost = to_goal_cost + speed_cost + ob_cost

# search minimum trajectory
if min_cost >= final_cost:
min_cost = final_cost
min_u = [v, w]
best_trajectory = trajectory

# print(min_u)
# input()

return min_u, best_trajectory


def dwa_control(x, u, config, goal, ob):
"""

:param x:
:param u:
:param config:
:param goal:
:param ob:
:return:
"""
# Dynamic Window control

vr = calc_dynamic_window(x, config, start)

u, trajectory = calc_final_input(x, u, vr, config, goal, ob)

return u, trajectory


def plot_arrow(x, y, yaw, length=0.5, width=0.1):
"""

:param x:
:param y:
:param yaw:
:param length:
:param width:.001
:return:
length_includes_head
"""
plt.arrow(x, y, length * math.cos(yaw), length * math.sin(yaw),
head_length=1.5 * width, head_width=width)
plt.plot(x, y)


def main():
"""

:return:
"""
global start
# print(__file__ + " start!!")
#
x = np.array([0.0, 0.0, math.pi / 2.0, 0.2, 0.0])

goal = np.array([10, 3])  # 第一个目标点
goal2 = np.array([7.5, 10])  # 第二个目标点

#
# ob = np.matrix([[-1, -1],
# [0, 2],
# [4.0, 2.0],
# [5.0, 4.0],
# [5.0, 5.0],
# [5.0, 6.0],
# [5.0, 9.0],
# [8.0, 9.0],
# [7.0, 9.0],
# [12.0, 12.0]
# ])
ob = np.matrix([[0, 5], [2, 8]])
u = np.array([0.2, 0.0])
config = Config()
trajectory = np.array(x)

for i in range(1000):
# if start == 0:
u, best_trajectory = dwa_control(x, u, config, goal, ob)
# if start == 1:
# u, best_trajectory = dwa_control(x, u, config, goal2, ob)
print(u[0])
x = motion(x, u, config.dt)
# print(x)

trajectory = np.vstack((trajectory, x)) # store state history

# if show_animation and start == 0:
draw_dynamic_search(best_trajectory, x, goal, ob)
# if start == 1 and show_animation:
# draw_dynamic_search(best_trajectory, x, goal2, ob)

# check goal
if math.sqrt((x[0] - goal[0]) ** 2 + (x[1] - goal[1]) ** 2) <= config.robot_radius:
print("Goal1!")
start = 1
# #
# if math.sqrt((x[0] - goal2[0]) ** 2 + (x[1] - goal2[1]) ** 2) <= config.robot_radius:
# print("Goal2!")
break

x = np.array([x[0], x[1], x[2], -0.2, x[4]])  # 设置初始速度为负,可进行倒车
for i in range(1000):
# if start == 0:
u, best_trajectory = dwa_control(x, u, config, goal2, ob)
# if start == 1:
# u, best_trajectory = dwa_control(x, u, config, goal2, ob)
print(u[0])
x = motion(x, u, config.dt)
# print(x)

trajectory = np.vstack((trajectory, x)) # store state history

# if show_animation and start == 0:
draw_dynamic_search(best_trajectory, x, goal2, ob)
# if start == 1 and show_animation:
# draw_dynamic_search(best_trajectory, x, goal2, ob)

# check goal
if math.sqrt((x[0] - goal2[0]) ** 2 + (x[1] - goal2[1]) ** 2) <= config.robot_radius:
print("Goal1!")
start = 1
# #
# if math.sqrt((x[0] - goal2[0]) ** 2 + (x[1] - goal2[1]) ** 2) <= config.robot_radius:
# print("Goal2!")
break

print("Done")

# draw_path(trajectory, goal, ob, x)
draw_path(trajectory, goal2, ob, x)


def draw_dynamic_search(best_trajectory, x, goal, ob):
"""

:return:
"""
plt.cla() #
plt.plot(best_trajectory[:, 0], best_trajectory[:, 1], "-g")
plt.plot(x[0], x[1], "xr")
plt.plot(0, 0, "og")
plt.plot(goal[0], goal[1], "ro")
plt.plot(ob[:, 0], ob[:, 1], "bs")
plot_arrow(x[0], x[1], x[2])
plt.axis("equal")
plt.grid(True)
plt.pause(0.0001)


def draw_path(trajectory, goal, ob, x):
"""

:return:
"""
plt.cla() #

plt.plot(x[0], x[1], "xr")
plt.plot(0, 0, "og")
plt.plot(goal[0], goal[1], "ro")
plt.plot(ob[:, 0], ob[:, 1], "bs")
plot_arrow(x[0], x[1], x[2])
plt.axis("equal")
plt.grid(True)
plt.plot(trajectory[:, 0], trajectory[:, 1], ‘r‘)
plt.show()


if __name__ == ‘__main__‘:
main()

以上是关于dwa 设置多个目标点,倒车设计的主要内容,如果未能解决你的问题,请参考以下文章

算法学习之DWA局部路径规划算法

算法学习之DWA局部路径规划算法

ROS动态窗口法(dwa)解析

Linux小项目-倒车影像功能设计

Linux小项目-倒车影像功能设计

毕业设计:基于MicroPython的超声波倒车雷达系统